您好,欢迎访问三七文档
第十三章轴对称13.1.1轴对称(一)1.轴对称图形的特征:一个图形沿一条直线折叠后,折痕两侧的图形完全重合.2.练习:你能找出它们的对称轴吗?思考:大家想一想,你发现了什么?小结得出:.像这样,把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点.课本60练习1、2。习题13.1.1、2、6题.13.1.1轴对称(二)1.如下图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C对称点,线段AA′、BB′、CC′与直线MN有什么关系?为什么?对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.2.图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线.3.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上,所以线段的垂直平分线可以看成是与线段两端点距离相等。4.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?课本P34练习课本习题13.1、3、4、9题.13.1.2线段的垂直平分线的性质一.导入新课1.要作出线段的垂直平分线,根据垂直平分线的判定定理,到线段两端点距离相等的点在这条线段的垂直平分线上,又由两点确定一条直线这个公理,那么必须找到两个到线段两端点距离相等的点,这样才能确定已知线段的垂直平分线.[例]如图(1),点A和点B关于某条直线成轴对称,你能作出这条直线吗?已知:线段AB[如图(1)].求作:线段AB的垂直平分线.作法:如图(2)(1).分别以点A、B为圆心,以大于AB的长为半径作弧,两弧相交于C和D两点;(2).作直线CD.直线CD就是线段AB的垂直平分线.二.随堂练习12如图,与图形A成轴对称的是哪个图形?画出它们的对称轴.课本35练习1、2、3课本P36-37习题12.15、10、11、12题.§12.2.1画轴对称图形1.以虚线为对称轴画出图的另一半:2.如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L的对应点A′,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.3.如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.4.画出图形的另一半.5.随堂练习课本P41练习1、2.阅读课本P127~P130课本P45习题12.2的1、5、8、9题.§12.2.3用坐标表示轴对称1.如图:(1)观察上图中两个圆脸有什么关系?(2)已知右边图脸右眼的坐标为(4,3),左眼的坐标为(2,3),嘴角两个端点,右端点的坐标为(4,1),左端点的坐标为(2,1).你能根据轴对称的性质写出左边圆脸上左眼,右眼及嘴角两端点的坐标吗?2.在平面直角坐标系中,将坐标为(2,2),(4,2),(4,4),(2,4),(2,2)的点用线段依次连结起来形成一个图案.(1)纵坐标不变,横坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案与原图案相比有何变化?(2)横坐标不变,纵坐标分别乘以-1,再将所得的各个点用线段依次连结起来,所得的图案又与原图案相比有何变化?2.导入新课在如图所示的平面坐标系中,画出下列已知点及其对称点,并把坐标填入表格中.看看每对对称点的坐标有怎样的规律.再和同学讨论一下.已知点A(2,-3),B(-1,2),C(-6,-5),D(,1),E(4,0).12关于x轴的对称点A′(____,____)B′(_____,______)C′(_____,_____)D′(____,_____)E′(_____,_____).关于y轴的对称点A″(_____,____)B″(_____,______)C″(_____,_____)D″(____,_____)E″(_____,_____).关于y轴对称的每一对对称点的坐标纵坐标相同,横坐标互为相反数.书习题12.2─2、3、4题,第6题、第7题§12.3.1.1等腰三角形(一)1.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形.相等的两边叫做腰,另一边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫底角.同学们在自己作出的等腰三角形中,注明它的腰、底边、顶角和底角.2.等腰三角形是轴对称图形,它的对称轴是顶角的平分线所在的直线.3.等腰三角形的性质:等腰三角形的两个底角相等(简写成“等边对等角”).等腰三角形的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).课本P56练习1、2、3.阅读课本P49~P51课本P56─1、3、4、8题.4.如右图,在△ABC中,过C作∠BAC的平分线AD的垂线,垂足为D,DE∥AB交AC于E.求证:AE=CE.1.如果△ABC是轴对称图形,则它的对称轴一定是()A.某一条边上的高;B.某一条边上的中线C.平分一角和这个角对边的直线;D.某一个角的平分线2.等腰三角形的一个外角是100°,它的顶角的度数是()A.80°B.20°C.80°和20°D.80°或50°3、已知等腰三角形的腰长比底边多2cm,并且它的周长为16cm.求这个等腰三角形的边长.EDCAB§12.3.1.2等腰三角形(二)1.等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(简写成“等角对等边”).2.下面我们通过几个例题来初步学习等腰三角形判定定理的简单运用.[例2]求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.1.已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC(如图).求证:AB=AC.证明:∵AD∥BC,∴∠1=∠B(两直线平行,同位角相等),∠2=∠C(两直线平行,内错角相等).又∵∠1=∠2,∴∠B=∠C,∴AB=AC(等角对等边).2.已知:如图,AD∥BC,BD平分∠ABC.求证:AB=AD.证明:∵AD∥BC,∴∠ADB=∠DBC(两直线平行,内错角相等).又∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABD=∠ADB,∴AB=AD(等角对等边).[例3]如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D、E两点拉两条绳子,使得D、B、E在一条直线上,量得DE=4米,绳子CD和CE要多长?课本P531、2、3.课本P56─2、4、5、9、13题.P53~P54.§12.3.2.1等边三角形(一)1.等腰三角形中有一种特殊的等腰三角形──三条边都相等的三角形,叫等边三角形.2.等边三角形的判定定理:有一个角等于60°的等腰三角形是等边三角形。例4(书P54)[例5]如图,课外兴趣小组在一次测量活动中,测得∠APB=60°,AP=BP=200m,他们便得出一个结论:A、B之间距离不少于200m,他们的结论对吗?分析:我们从该问题中抽象出△APB,由已知条件∠APB=60°且AP=BP,由本节课探究结论知△APB为等边三角形.(1)EDCAB(2)EDCBMN21EDCABDCAB60ABP解:在△APB中,AP=BP,∠APB=60°,所以∠PAB=∠PBA=(180°-∠APB)=(180°-60°)=60°.于是∠PAB=∠PBA=∠APB.从而△APB为等边三角形,AB的长是200m,由此可以得出兴趣小组的结论是正确的.Ⅲ.随堂练习如图,△ABC是等边三角形,∠B和∠C的平分线相交于D,BD、CD的垂直平分线分别交BC于E、F,求证:BE=CF.Ⅴ.课后作业课本P54练习1、2.课本P56─5、6、7、10题.探究:如图,在等边三角形ABC的边AB、AC上分别截取AD=AE.△ADE是等边三角形吗?试说明理由.1.已知,如图,房屋的顶角∠BAC=100°,过屋顶A的立柱AD⊥BC.屋椽AB=AC,求顶架上∠B、∠C、∠BAD、∠CAD的度数.3.已知:如图,△ABC是等边三角形,DE∥BC,交AB、AC于D、E.121221EDCABFDCABDCAEBEDCAB§12.3.2.2等边三角形(二)1.定理:在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.已知:如图,在Rt△ABC中,∠C=90°,∠BAC=30°.求证:BC=AB.分析:从三角尺的摆拼过程中得到启发,延长BC至D,使CD=BC,连接AD.证明:在△ABC中,∠ACB=90°,∠BAC=30°,则∠B=60°.延长BC至D,使CD=BC,连接AD(如下图)∵∠ACB=60°,∴∠ACD=90°.∵AC=AC,∴△ABC≌△ADC(SAS).∴AB=AD(全等三角形的对应边相等).∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形).∴BC=BD=AB.[师]这个定理在我们实际生活中有广泛的应用,因为它由角的特殊性,揭示了直角三角形中的直角边与斜边的关系,下面我们就来看一个例题.[例5]右图是屋架设计图的一部分,点D是斜梁AB的中点,立柱BC、DE垂直于横梁AC,AB=7.4m,∠A=30°,立柱BD、DE要多长?分析:观察图形可以发现在Rt△AED与Rt△ACB中,由于∠A=30°,所以DE=AD,BC=AB,又由D是AB的中点,所以DE=AB.解:因为DE⊥AC,BC⊥AC,∠A=30°,由定理知BC=AB,DE=AD,所以BD=×7.4=3.7(m).12CABDCAB1212121214121212DCAEB又AD=AB,所以DE=AD=×3.7=1.85(m).答:立柱BC的长是3.7m,DE的长是1.85m.[例]等腰三角形的底角为15°,腰长为2a,求腰上的高.已知:如图,在△ABC中,AB=AC=2a,∠ABC=∠ACB=15°,CD是腰AB上的高.求:CD的长.分析:观察图形可以发现,在Rt△ADC中,AC=2a,而∠DAC是△ABC的一个外角,则∠DAC=15°×2=30°,根据在直角三角形中,30°角所对的边是斜边的一半,可求出CD.解:∵∠ABC=∠ACB=15°,∴∠DAC=∠ABC+∠BAC=30°.∴CD=AC=a(在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半).Ⅲ.随堂练习(一)课本P56练习(二)补充练习1.已知:如图,△ABC中,∠ACB=90°,CD是高,∠A=30°.求证:BD=AB.证明:在Rt△ABC中,∠A=30°,∴BC=AB.在Rt△BCD中,∠B=60°,∴∠BCD=30°∴BD=BC.∴BD=AB.2.已知直角三角形的一个锐角等于另一个锐角的2倍,这个角的平分线把对边分成两条线段.求证:其中一条是另一条的2倍.已知:在Rt△ABC中,∠A=90°,∠ABC=2∠C,BD是∠ABC的平分线.求证:CD=2AD.证明:在Rt△ABC中,∠A=90°,∠ABC=2∠C,∴∠ABC=60°,∠C=30°.又∵BD是∠ABC的平分线,1212121214121214DCABDCABDCAB∴∠ABD=∠DBC=30°.∴AD=BD,BD=CD.∴CD=2AD.Ⅴ.课后作业课本P58─11、12、13、14题.Ⅵ.活动与探究在三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°.过程:可以从证明“在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半”.从辅助线的作法中得到启示.结果:已知:如图(1),在Rt△ABC中,∠C=90°,BC=AB.求证:∠BAC=30°.证明:延长BC到D,使CD=BC,连
本文标题:第十三章轴对称
链接地址:https://www.777doc.com/doc-2162938 .html