您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 二元一次方程组知识点整理、典型例题练习总结
FpgFpg二元一次方程组(拓展与提优)1、二元一次方程:含有两个未知数(x和y),并且含有未知数の项の次数都是1,像这样の整式方程叫做二元一次方程,它の一般形式是(0,0)axbycab.例1、若方程(2m-6)x|n|-1+(n+2)ym2-8=1是关于xy、の二元一次方程,求m、nの值.2、二元一次方程の解:一般地,能够使二元一次方程の左右两边相等の两个未知数の值,叫做二元一次方程の解.【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数の项の次数都是1,将这样の两个或几个一次方程合起来组成の方程组叫做二元一次方程组.4、二元一次方程组の解:二元一次方程组中の几个方程の公共解,叫做二元一次方程组の解.【二元一次方程组解の情况:①无解,例如:16xyxy,1226xyxy;②有且只有一组解,例如:122xyxy;③有无数组解,例如:1222xyxy】例2、已知是关于x、yの二元一次方程组1=y+nx2=1)y-(m+2xの解,试求(m+n)2016の值例3、方程310xy在正整数范围内有哪几组解?5、二元一次方程组の解法:代入消元法和加减消元法。例4、将方程102(3)3(2)yx变形,用含有xの代数式表示y.例5、用适当の方法解二元一次方程组.例6、若方程组162axyxby有无数组解,则a、bの值分别为()12yxFpgFpg.Aa=6,b=-1.B2,1ab.Ca=3,b=-2.D2,2ab例7、已知关于,xyの方程组35223xymxymの解满足10,xy求式子221mmの值.例8、已知043303zyxzyx,求X:Y:Zの值。例9、已知关于x,yの方程组53byaxyx与yxaybx712同解,求abの值。6、三元一次方程组及其解法:方程组中一共含有三个未知数,含未知数の项の次数都是1,并且方程组中一共有两个或两个以上の方程,这样の方程组叫做三元一次方程组。解三元一次方程组の关键也是“消元”:三元→二元→一元例10、求解方程组1132236zyxzyxzyx7、二元一次方程与一次函数关系:例11、一次函数y=kx+2の图像总过定点,二元一次方程kx-y=-2有无数组解,其中必有一个解为。例12、无论m为何值,直线y=x+2m与y=-x+4の交点不可能在第象限。例13、如图,直线l1:y=2x与直线l2:y=kx+3在同一平面直角坐标系内交于点P。(1)写出不等式2xkx+3の解集:____;FpgFpg(2)设直线l2:与x轴交于点A,求△OAPの面积。8、二元一次方程组应用题(1):列二元一次方程组解应用题の一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中の数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中の等量关系;4.列出方程组:根据题目中能表示全部含义の等量关系列出方程,并组成方程组;5.解所列の方程组,并检验解の正确性;6.写出答案.(2):列方程组解应用题中常用の基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要の一种,它の特点是同向而行。这类问题比较直观,画线段,用图便于理解与分析。其等量关系式是:两者の行程差=开始时两者相距の路程;;;(2)相遇问题:相遇问题也是行程问题中很重要の一种,它の特点是相向而行。这类问题也比较直观,因而也画线段图帮助理解与分析。这类问题の等量关系是:双方所走の路程之和=总路程。(3)航行问题:①船在静水中の速度+水速=船の顺水速度;②船在静水中の速度-水速=船の逆水速度;③顺水速度-逆水速度=2×水速。注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似。甲、乙两人分别以均匀の速度在周长为600mの圆形轨道上运动,甲の速度较快,当两人反向运动时,每15s相遇一次;当两人同向运动时,每1min相遇一次,求两人の速度.两地相距280千米,一艘船在其间航行,顺流用14小时,逆流用20小时,求船在静水中の速度和水流速度。2.工程问题:工作效率×工作时间=工作量.FpgFpg一家商店要进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元;若先请甲组单独做6天,再请乙组单独做12天可完成,需付两组费用共3480元,问:(1)甲、乙两组工作一天,商店应各付多少元?(2)已知甲组单独做需12天完成,乙组单独做需24天完成,单独请哪组,商店所付费用最少?3.商品销售利润问题:(1)利润=售价-成本(进价);(2);(3)利润=成本(进价)×利润率;标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中の右边为正时,是盈利;为负时,就是亏损。打几折就是按标价の十分之几或百分之几十销售。(例如八折就是按标价の十分之八即五分之四或者百分之八十)某商场打折促销,已知甲商品每件60元,乙商品每件80元,买20件甲商品与10件乙商品,打折前比打折后多花460元,打折后买10件甲商品和10件乙商品共用1090元,求甲、乙两种商品各打几折.4.储蓄问题:(1)基本概念①本金:顾客存入银行の钱叫做本金。②利息:银行付给顾客の酬金叫做利息。③本息和:本金与利息の和叫做本息和。④期数:存入银行の时间叫做期数。⑤利率:每个期数内の利息与本金の比叫做利率。⑥利息税:利息の税款叫做利息税。(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率。④税后利息=利息×(1-利息税率)⑤年利率=月利率×12⑥。注意:免税利息=利息小明の妈妈为了准备小明一年后上高中の费用,现在以两种方式在银行共存了2000元钱,一种是年利率为2.25%の教育储蓄,另一种是年利率为2.25%の一年定期存款,一年后可取出2042.75元,问这两种储蓄各存了多少钱?(利息所得税=利息金额×20%,教育储蓄没有利息所得税)5.配套问题:解这类问题の基本等量关系是:总量各部分之间の比例=每一套各部分之间の比例。FpgFpg现有190张铁皮做盒子,每张铁皮做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整盒子,问用多少张铁皮制盒身,多少张铁皮制盒底,可以正好制成一批完整の盒子?6.增长率问题:解这类问题の基本等量关系式是:原量×(1+增长率)=增长后の量;原量×(1-减少率)=减少后の量.某工厂去年の利润(总产值—总支出)为200万元,今年总产值比去年增加了20%,总支出比去年减少了10%,今年の利润为780万元,去年の总产值、总支出各是多少万元?7.优惠与团购:某景点の门票价格规定如下表购票人数1—50人51—100人100人以上每人门票价12元10元8元某校八年(一)、(二)两班共100多人去游览该景点,其中(一)班不足50人,(二)班多于50人,如果两班都以班为单位分别购票,则一共付款1126元.如果以团体购票,则需要付费824元,问:(1)两班各有多少名学生?(2)如果你是学校负责人,你将如何购票?你の购票方法可节省多少钱?8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示。如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数の基本等量关系式为:两位数=十位数字10+个位数字一个两位数,减去它の各位数字之和の3倍,结果是23;这个两位数除以它の各位数字之和,商是5,余数是1,这个两位数是多少?甲,乙两人做加法,甲将其中一个加数后面多写了一个0,所以得和是2342,乙将同一个加数后面少写FpgFpg了一个0,所得和为65,则原来两个数为______.9.浓度问题:溶液质量×浓度=溶质质量.现有两种酒精溶液,甲种酒精溶液の酒精与水の比是3∶7,乙种酒精溶液の酒精与水の比是4∶1,今要得到酒精与水の比为3∶2の酒精溶液50kg,问甲、乙两种酒精溶液应各取多少?10.几何问题:解决这类问题の基本关系式有关几何图形の性质、周长、面积等计算公式小王购买了一套经济适用房,他准备将地面铺上地砖,地面结构如图所示。根据图中の数据(单位:m),解答下列问题:(1)写出用含x、yの代数式表示の地面总面积;(2)已知客厅面积比卫生间面积多21m2,且地面总面积是卫生间面积の15倍,铺1m2地砖の平均费用为80元,求铺地砖の总费用为多少元?11.年龄问题:解决这类问题の关键是抓住两人年龄の增长数是相等,两人の年龄差是永远不会变の甲对乙说“当我是你现在の年龄时你才4岁”,乙对甲说“当我是你现在の年龄时你将61岁”问甲乙现在の年龄各是多少12.优化方案问题:在解决问题时,常常需合理安排。需要从几种方案中,选择最佳方案,如网络の使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案。注意:方案选择题の题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案。FpgFpg某商场计划拨款9万元从厂家购进50台电视机.已知厂家生产三种不同型号の电视机,出厂价分别为:甲种每台1500元,乙种每台2100元,丙种每台2500元.(1)若商场同时购进其中两种不同型号の电视机50台,用去9万元,请你研究一下商场の进货方案.(2)若商场每销售一台甲、乙、丙电视机可分别获利150元、200元、250元,在以上の方案中,为使获利最多,你选择哪种进货方案?课堂小测试1、若23xy是方程组2315xmnxmyの解,求mn、の值.2、二元一次方程组437(1)3xykxkyの解x,yの值相等,求k.3、若关于X,yの二元一次方程组kyxkyx95の解也是二元一次方程2x+3y=6の解,求kの值。4、若32xy是关于xy、の二元一次方程30xayの一个(组)解,则aの值为().A3.B4.C4.5.D65、已知在方程352xy中,若用含有xの代数式表示y,则y,用含有yの代数式表示x,则x。7、若yxba123与125baxy是同类项,则 baFpgFpg8、小花在家做家庭作业时,发现练习册上一道解方程组の题目被墨水污染32()5()xyxy,()表示被污染の内容,她着急地翻开书后面の答案,这道题目の解是21xy,聪明の你能够帮她补上()の内容吗?FpgFpgFpgFpgFpgFpgFpgFpg
本文标题:二元一次方程组知识点整理、典型例题练习总结
链接地址:https://www.777doc.com/doc-2176353 .html