您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 精编高三理科数学直线与圆锥曲线位置关系题型与方法
1/4精编高三理科数学直线与圆锥曲线位置关系题型与方法题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线:1lykx与椭圆22:14xyCm始终有交点,求m的取值范围题型二:弦的垂直平分线问题例题2、过点T(-1,0)作直线l与曲线N:2yx交于A、B两点,在x轴上是否存在一点E(0x,0),使得ABE是等边三角形,若存在,求出0x;若不存在,请说明理由。例题3、已知椭圆1222yx的左焦点为F,O为坐标原点。(Ⅰ)求过点O、F,并且与2x相切的圆的方程;(Ⅱ)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围。题型三:动弦过定点的问题例题4、(07山东)已知椭圆C的中心在坐标原点,焦点在x轴上,椭圆C上的点到焦点距离的最大值为3;最小值为1;(Ⅰ)求椭圆C的标准方程;(Ⅱ)若直线mkxyl:与椭圆C相交于A,B两点(A,B不是左右顶点),且以AB为直径的圆过椭圆C的右顶点。求证:直线l过定点,并求出该定点的坐标。题型四:过已知曲线上定点的弦的问题例题5、已知点A、B、C是椭圆E:22221xyab(0)ab上的三点,其中点A(23,0)是椭圆的右顶点,直线BC过椭圆的中心O,且0ACBC,2BCAC,如图。(I)求点C的坐标及椭圆E的方程;(II)若椭圆E上存在两点P、Q,使得直线PC与直线QC关于直线3x对称,求直线PQ的斜率。练习:(2009辽宁)已知,椭圆C以过点A(1,),两个焦点为(-1,0)(1,0)。(1)求椭圆C的方程;(2)E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,证明直线EF的斜率为定值,并求出这个定值。题型五:共线向量问题例题(07福建)如图,已知点F(1,0),直线l:x=-1,P为平面上的动点,过P作直线l的垂线,垂足为点Q,且QPQFFPFQ(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)过点F的直线交轨迹C于A、B两点,交直线l于点M,已知12,MAAFAFBF,求12的值。题型六:面积问题例题7、(07陕西理)已知椭圆C:12222byax(a>b>0)的离心率为,36短轴一个322/4端点到右焦点的距离为3。(Ⅰ)求椭圆C的方程;(Ⅱ)设直线l与椭圆C交于A、B两点,坐标原点O到直线l的距离为23,求△AOB面积的最大值。练习1、如图,直线ykxb与椭圆2214xy交于A、B两点,记ABC的面积为S。(Ⅰ)求在0k,01b的条件下,S的最大值;(Ⅱ)当12,SAB时,求直线AB的方程。题型七:弦或弦长为定值问题例题9、(07湖北理科)在平面直角坐标系xOy中,过定点C(0,p)作直线与抛物线x2=2py(p0)相交于A、B两点。(Ⅰ)若点N是点C关于坐标原点O的对称点,求△ANB面积的最小值;(Ⅱ)是否存在垂直于y轴的直线l,使得l被以AC为直径的圆截得弦长恒为定值?若存在,求出l的方程;若不存在,说明理由。(此题不要求在答题卡上画图)练习、(山东09理)(22)(本小题满分14分)设椭圆E:22221xyab(a,b0)过M(2,2),N(6,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OAOB?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。题型八:角度问题例题9、(08重庆理)如图(21)图,M(-2,0)和N(2,0)是平面上的两点,动点P3/4满足:6.PMPN(Ⅰ)求点P的轨迹方程;(Ⅱ)若2·1cosPMPNMPN=,求点P的坐标.练习2、(07四川理)设1F、2F分别是椭圆1422yx的左、右焦点。(Ⅰ)若P是该椭圆上的一个动点,求1PF·2PF的最大值和最小值;(Ⅱ)设过定点)2,0(M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围。练习3、(08陕西理)已知抛物线C:22yx,直线2ykx交C于AB,两点,M是线段AB的中点,过M作x轴的垂线交C于点N.(Ⅰ)证明:抛物线C在点N处的切线与AB平行;(Ⅱ)是否存在实数k使0NANB,若存在,求k的值;若不存在,说明理由.问题九:四点共线问题例题10、(08安徽理)设椭圆2222:1(0)xyCabab过点(2,1)M,且着焦点为1(2,0)F(Ⅰ)求椭圆C的方程;(Ⅱ)当过点(4,1)P的动直线l与椭圆C相交与两不同点,AB时,在线段AB上取点Q,满足APQBAQPB,证明:点Q总在某定直线上练习1、(08四川理)设椭圆22221xyab(0)ab的左、右焦点分别为1F、2F,离心率22e,右准线为l,M、N是l上的两个动点,120FMFN.(Ⅰ)若12||||25FMFN,求a、b的值;(Ⅱ)证明:当||MN取最小值时,12FMFN与12FF共线.问题十:范围问题(本质是函数问题)例题1、已知直线)0(112222babyaxxy与椭圆相交于A、B两点。(1)若椭圆的离心率为33,焦距为2,求线段AB的长;(2)若向量OBOA与向量互相垂直(其中O为坐标原点),当椭圆的离心率]22,21[e时,求椭圆的长轴长的最大值。4/4(07四川理)设1F、2F分别是椭圆1422yx的左、右焦点。(Ⅰ)若P是该椭圆上的一个动点,求1PF·2PF的最大值和最小值;(Ⅱ)设过定点)2,0(M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围。(山东09理)(22)(本小题满分14分)设椭圆E:22221xyab(a,b0)过M(2,2),N(6,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且OAOB?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。问题十一、存在性问题:(存在点,存在直线y=kx+m,存在实数,存在图形:三(2009山东卷理)(本小题满分14分)设椭圆E:(a,b0)过M(2,),N(,1)两点,O为坐标原点,(I)求椭圆E的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点A,B,且?若存在,写出该圆的方程,并求|AB|的取值范围,若不存在说明理由。(2009全国卷Ⅱ理)(本小题满分12分)已知椭圆的离心率为,过右焦点F的直线与相交于、两点,当的斜率为1时,坐标原点到的距离为.(I)求,的值;(II)上是否存在点P,使得当绕F转到某一位置时,有成立?若存在,求出所有的P的坐标与的方程;若不存在,说明理由。(2009福建卷理)(本小题满分13分)已知A,B分别为曲线C:+=1(y0,a0)与x轴的左、右两个交点,直线过点B,且与轴垂直,S为上异于点B的一点,连结AS交曲线C于点T.(1)若曲线C为半圆,点T为圆弧的三等分点,试求出点S的坐标;(II)如图,点M是以SB为直径的圆与线段TB的交点,试问:是否存在,使得O,M,S三点共线?若存在,求出a的值,若不存在,请说明理由。22221xyab26OAOB2222:1(0)xyCabab33lCABlOl22abClOPOAOBl22xa2ylxlABa
本文标题:精编高三理科数学直线与圆锥曲线位置关系题型与方法
链接地址:https://www.777doc.com/doc-2179114 .html