您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 用于汽车车门防撞梁的新型多层金属复合材料
用于汽车车门防撞梁的新型多层金属复合材料备受工业界的关注的高强度钢板热成形(也称作热冲压)技术发源于欧洲,其技术优势是:零部件强度可高达1500MPa,可组焊成高强度驾乘单元,能承受6t以上的静压而不损;通过减小壁厚或截面尺寸从而减轻质量(达18%-35%),实现轻量化,并节约材料消耗。其原理是:把特殊的硼合金钢加热使之奥氏体化,随后将红热的板料送入有冷却系统的模具内冲压成形,同时被具有快速均匀冷却系统的模具冷却淬火,钢板组织由奥氏体转变成马氏体,从而得到超高强度比的钢板。现在通过氧化脱碳得到的冲压件防撞梁,其表面软而内部硬,材料性质在厚度方向上呈梯度分布,即表面硬度、强度低而内部的硬度、强度高,且该防撞梁复合材料的强度分布与硬度分布趋势相同,而材料塑性性能的分布与硬度的分布趋势相反,说明该金属复合材料为新型连续梯度分布的复合材料。对热成形防撞梁进行三点弯曲实验和相应的有限元模拟研究,发现热冲压件的最大弯曲载荷远大于冷冲压件(超过冷冲压防撞梁零部件3倍左右),热冲压成形工艺使该金属材料在厚度方向上的性能呈梯度变化,形成的多层复合材料显著提高了结构的抗弯曲能力。通过对比防撞梁金属复合材料与内部各相材料冲击时所受到的冲击力、吸能等性能,发现这种新型金属复合材料综合了各单相材料的优秀性能,适合用于承受冲击吸能构件的选材。你说的是热冲压成形工艺吧?据我所知是能够实现1800MPa级别的,所以1500MPa的热冲压成形钢已经有商业产品了。至于为什么不冷成形后再进行淬火处理,我的理解是尺寸精度难以保证。目前热冲压成形包括直接法和间接法,间接法就是先冷冲压到一定形状,然后再奥氏体化进行定型后淬火成形。而你提到的裂纹,建议你看一下有没有混晶、夹杂和带状组织,还有就是表面是不是有冷冲的裂纹,这些都是疲劳的源头。摘要用热冲压生产所需的高强度钢构件(也称为冲压硬化)需要渊博的知识和控制成形过程。这样,才能使最后一部分的属性达到预期目标和适应不同的工艺参数及满足它们之间的相互关系。除了跟传统的冷成型的一些参数外不同外,热和微观结构等参数使得热冲压过程的机械性能变得更加复杂。这些参数是解释物理现象必不可少的。在这篇文章中,对热冲压中的热,机械,微观结构和技术领域的最新状况进行了综述。研究所有工序后,从半成品加热到热冲压空各个过程都进行了描述。对现有研究结果进行调查显示,在整个过程中的成形相转变,连续流变行为,都和机械性能以及几何形状相关。形成的一些差距,主要和相变,连续流动行为的领域,机械和几何形状之间的部分性质的相关。这些和先进工艺的工业应用都有一些差距。该论述的目的是提供一个成型过程背景,并展示热冲压领域的巨大潜力。1、引言鉴于汽车的轻量化,安全化和抗冲击性能,对于高强度汽车机构钢板的需求日益明显。瑞典公司热冲压专利及其发展(1977年专利),被用于一些刀具刃上。1984年Saab汽车公司是第一家采用硬化硼钢板制作了Saab9000的汽车制造商。生产的零部件从1987年的的300万件/年到1997年的800万件/年。自从2000年起,更多的热冲压零部件被用于汽车上,并且年生产量在2007年已达到1亿多件。热冲压件在汽车工业的应用比如说汽车底盘,像A柱,B柱,保险杠,车顶纵梁和管道,如图1。目前热冲压存在两种途径:直接和间接热冲压方法。在直接热冲压中,半成品被加热,再转移到冲压,随后在闭式模具内成型和淬火。见图2a。间接热冲压的特征是使用一个接近完整的预成型的冷模,这仅用于淬火和奥氏体化后冲压的标准使用。见图2b。材料中完全马氏体转变引起应力强度达到1500MPa。本文回顾了热冲压的很多研究。这将从描述用于热冲压的工件材料开始。然后,描述热冲压过程中的重点。最后,展示了热冲压后零部件的一些工艺以及裁、修改特性。本文不仅包括了大量的实验还包括了热冲压领域的许多研究。2材料和涂层Naderi对于高强度钢的研究显示,仅使用22MnB5,27MnCrB5,37MnB4钢级才能在热冲压经过水冷后能得到完全马氏体组织。(2007)在这里,22MnB5是最为常用于热冲压的钢级。起初,该材料展示了能达到600MPa的铁素体-珠光体组织。经过热冲压工序后零部件获得马氏体组织并且其强度到到1500MPa(见图3a)。为了获得这类的组织和硬度的转变,半成品将被在950℃持续奥氏体化至少5min。然后,成型,在冷却水下淬火5-10s。由于热的工件与冷的模具接触,热的工件在封闭的模具内被淬火。如果冷却速率超过最小的冷却速率,大约为27K/s,温度大约在400℃左右,就将导致非扩散马氏体组织的转变,这将最终产生高强度的部件(图3b)。转变结束点位Mf)。在淬火后钢的机械性能变化将取决于碳含量和最终获得的强度,该强度可以通过适当调整碳含量来控制。我们知道Mn和Cr等合金元素对淬火后强度的影响较小。但是,自从发现这些元素对淬透性有影响之后,它们在该领域变得必不可少。因此,设计的相转变和淬透性可以通过可行的冷却速率开获得。硼是对淬透性影响最大的元素,鉴于硼延缓了向软组织转变和导致马氏体组织的产生。在奥氏体化条件下,在钢与空气接触时很快就形成氧化膜。为了避免表面氧化和脱碳,大量的金属板会涂覆上一层保护层。在直接热冲压中应用最为广泛的是Al-Si涂层。Borsetto等研究了热学参数对Al-Si涂层机械性能的影响。这些合金镀层通常是持续热浸电镀工艺,溶液为10%Si和3%Fe和87%Al。在对含有涂覆层的工件热处理的过程中,Fe扩散从表层-基体界面到表层是个热激活过程。Al-Si涂层的熔点接近600℃。然而,由于基体中存在Fe,Al-Fe合金有着更高的熔点在界面生长并很快达到表面。Al-Fe合金迁移到表面,它们有高的熔点防止了表层被氧化。对于一个典型950℃热冲压过程,次层组织为交替变化的Al-Fe含量。在直接热冲压过程中,这个保护层阻止了氧化层的的产生。相比与在室温下的初始状态基础材料,由于Al-Si层较低形成的限制,热浸镀铝板不能用于间接热冲压过程中,它们不适合冷成形。这种涂层不提供阴极保护,如锌,但有高的栅栏保护。类似的冷成型件,阴极保护是适用于热冲压零件的。汽车行业中的这些要求可能通过阴极保护得到满足,如锌。在加热和热冲压过程中,热浸镀锌的锌层基体材料与形成金属间化物锌-铁相发生反应。为了尽量减少涂层中的裂纹扩展到基础材料,热浸镀锌22MnB5只能在间接热冲压中使用。在热冲压后,氧化层必须经过喷丸移除,以避免不良的涂料附着。另一种22MnB5的保护涂层是X-tex。这相当于给直接和间接的热冲压附加一层防腐层。根据sol–gel工序涂层以μm的氧化材料的结合为基础。有机和无机材料混合Al粒子来形成保护层。这种7μm的厚保护层在冷成型过程中使得材料在不加润滑时候还能流动。最新的防止氧化层产生的方法是采用防护油,正如MoriandIto(2009)中所描述的一样。电炉中加热的钢板氧化能得到阻碍,并且研究了两种不同的防护油。氧化防护油在成型和热弯曲试验之外的冷却试验中进行了研究。钢板的表面分析显示润滑(四次)可以减少表面氧化。3加热热冲压过程是从加热到奥氏体化温度的钢板开始的。为了了解该过程,在热冲压过程中设置观察窗口,热处理工艺参考LechlerandMerklein(2008)的奥氏体温度和时间。在这些测试中,试样在两端都是40MPa的压力下淬火。为了评价相转变以及淬火硬度,在维氏硬度计HV10上进行硬度测试。最短的奥氏体化时间在不同的奥氏体化温度和不同厚度的钢板下火的最大的硬度为470HV,如图4所示。研究结果显示可淬火的22MnB5,其同等的奥氏体化程度最短热处理时间的关键因素是奥氏体化温度图4a和钢板厚度图4b,。研究发现,在炉温为950℃下持续3min有利于获的最大马氏体含量,也是最大硬度约为470HV。随着炉温的下降,奥氏体化持续时间增加。在热处理时随着确定热冲压零部件足够精确的焊接性能(Stoppetal.,2007),Al–Si涂层的上限时间取决于三元合金Al–Si–Fe层的厚度(AusterhoffandRostek,2002)。根据实验(Stoppetal.,2007),在炉中不超过奥氏体化时覆层厚度大约为40um。Lechler(2009)的研究中列出了钢板热处理工艺对零部件性能,处理时间,热冲压成本效率有着深远的影响。因此,同等的钢板温度和短的热处理时间主要却居于热处理系统。钢板可以通过不同的加热系统:加热炉,电磁感应,和热传导(图5)。3.1辊底式炉在现存的行列中,毛坯通常在辊底炉或步进炉中加热。这些炉的大小和关联负载取决于物料通过量和被加热的材料。在特殊的加热曲线下才能使Al–Si表层材料防止氧化皮形成。这是因为必须在基体材料和表层中产生扩散(Suehiroetal.,2003)。现有的热冲压线中熔炉的长度已达30-40米长。高的空间需求和日增的研究费用使得加热毛坯的方法力求转变。冲压硬度零件的循环时间取决于合模时间和奥氏体化所需滞留在炉里的时间,在表层的例子中为了达到完全合金化。谈到合模时间,模具的冷却的可选择性为减少循环时间提供了可能。减少滞留在炉内的时间可以仅通过随后彻底的加热概念获得(Lenzeetal.,2008a,b)。这些方法在发展相和实验研究中必须变化它们来适用于工业应用。3.2热传导热传导是一个可以替换的加热系统。对于加热工序,毛坯夹在两个电极片之间(Morietal.,2009)。电流经过金属板。材料的抗阻引起板的发热。材料热导率的实质基于Joule定律,即电路循环中热的产生与电流循环强度有关。电流损失的部分是因为电阻自身发热。在元件的表面有低的表面质量和绝缘层可以增加阻抗,并因此能在接触区域产生热。这种接触的设计以及接触压力的控制对于同等加热的物质非常重要(Kollecketal.,2008)。效能使是用热导中的一个非常重要因素。这个因素直接取决于部件的阻抗。因为长的部件比短的部件有更高的阻抗,热导率主要为部件有适当的长度/直径比率,比如管体,棒条体,电线,和带状材料(Kollecketal.,2008)。加热系统的劣势是沿着材料的长度方向会有不均匀的温度。工业应用的另一个问题是这种加热方法很难给复杂形状的毛坯加热(Behrensetal.,2008)。3.3感应加热最后介绍的加热系统是感应加热。原则上,所有的导体或半导体都可以作为感应加热体,因此该领域的应用范围很广:金属熔炼,块状,回火和组装包装工业。感应器的几何形状决定了磁场区域的位置,这也决定工作的效率。感应器和工件的距离也影响加热系统的效率。一方面,感应器和工件之间的绝缘要做好。另一方面,在加热的时候工件的形状会变化。感应器一小段距离的误差将导致加热系统的损坏(Kollecketal.,2009a,b)。相对辊底式加热炉,感应加热的效率是其的两倍,因为辊底式加热炉中大量的热量将从辊轴和气体中散发走。4、成型为了避免在成形前工件的冷却,工件必须尽快在炉中冲压成型。而且,成型必须在马氏体相变之前完成。所有,迅速的闭模盒和成型工序是热冲压成功的关键。在成形之后,工件在封闭模内淬火,冷却系统是通过导管内的冷却水来将热量带走。为了避免在成形过程中,冲模和工件加剧之间部分的淬火,通常在热冲压系统中留一段空的距离。(见图6)热冲压中另一个工艺参数是工作介质的方法。温度作为热成型工艺中的一个参数,其在淬火的时使得该创新技术成为可能(Neugebaueretal.,2009)。成型步骤是从调整侧面或空白模具处开始的。在模具闭合后,成型步骤是在工作介质中完成(见图7)。Neugebaueretal.(2009)和Lindkvistetal.(2009)的研究中,氮气和空气分别加压到600bar作为工作介质。相对于普通的热冲压,热气形成的优势是在成形步骤的开始时开放的。另外,因为冲压时部件和模具的接触次数更少,均匀的工件温度有利于形成一致的产品。另外,热气成形中更有趣的是绝热的使用或者不可压缩的工作介质。强的气流可以使热冲压过程中的效率提高,因为这有利于缩短工序的时间。提高热导率可
本文标题:用于汽车车门防撞梁的新型多层金属复合材料
链接地址:https://www.777doc.com/doc-2202678 .html