您好,欢迎访问三七文档
第七章刚体转动习题一、选择题1、如图所示,A、B为两个相同的绕着轻绳的定滑轮.A滑轮挂一质量为M的物体,B滑轮受拉力F,而且F=Mg.设A、B两滑轮的角加速度分别为A和B,不计滑轮轴的摩擦,则有(A)A=B.(B)A>B.(C)A<B.(D)开始时A=B,以后A<B.[]2、几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体(A)必然不会转动.(B)转速必然不变.(C)转速必然改变.(D)转速可能不变,也可能改变.[]3、一圆盘绕过盘心且与盘面垂直的光滑固定轴O以角速度按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F沿盘面同时作用到圆盘上,则圆盘的角速度(A)必然增大.(B)必然减少.(C)不会改变.(D)如何变化,不能确定.[]4、均匀细棒OA可绕通过其一端O而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A)角速度从小到大,角加速度从大到小.(B)角速度从小到大,角加速度从小到大.(C)角速度从大到小,角加速度从大到小.(D)角速度从大到小,角加速度从小到大.[]5、关于刚体对轴的转动惯量,下列说法中正确的是(A)只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B)取决于刚体的质量和质量的空间分布,与轴的位置无关.(C)取决于刚体的质量、质量的空间分布和轴的位置.(D)只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[]6、一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2),如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力(A)处处相等.(B)左边大于右边.(C)右边大于左边.(D)哪边大无法判断.[]7、有两个半径相同,质量相等的细圆环A和B.A环的质量分布均匀,B环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为JA和JB,则(A)JA>JB.(B)JA<JB.(C)JA=JB.(D)不能确定JA、JB哪个大.[]8、有两个力作用在一个有固定转轴的刚体上:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4)当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A)只有(1)是正确的.AMBFOFFOAm2m1O(B)(1)、(2)正确,(3)、(4)错误.(C)(1)、(2)、(3)都正确,(4)错误.(D)(1)、(2)、(3)、(4)都正确.[]9、一水平圆盘可绕通过其中心的固定竖直轴转动,盘上站着一个人.把人和圆盘取作系统,当此人在盘上随意走动时,若忽略轴的摩擦,此系统(A)动量守恒.(B)机械能守恒.(C)对转轴的角动量守恒.(D)动量、机械能和角动量都守恒.(E)动量、机械能和角动量都不守恒.[]10、一圆盘正绕垂直于盘面的水平光滑固定轴O转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度(A)增大.(B)不变.(C)减小.(D)不能确定.[]11、关于力矩有以下几种说法:(1)对某个定轴而言,内力矩不会改变刚体的角动量.(2)作用力和反作用力对同一轴的力矩之和必为零.(3)质量相等,形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速度一定相等.在上述说法中,(A)只有(2)是正确的.(B)(1)、(2)是正确的.(C)(2)、(3)是正确的.(D)(1)、(2)、(3)都是正确的.[]12、有一半径为R的水平圆转台,可绕通过其中心的竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度0转动,此时有一质量为m的人站在转台中心.随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为(A)02mRJJ.(B)02RmJJ.(C)02mRJ.(D)0.[]二、填空题13、决定刚体转动惯量的因素是________________________________________________________________________________________________.14、一飞轮以600rev/min的转速旋转,转动惯量为2.5kg·m2,现加一恒定的制动力矩使飞轮在1s内停止转动,则该恒定制动力矩的大小M=_________.15、如图所示,一质量为m、半径为R的薄圆盘,可绕通过其一直径的光滑固定轴AA转动,转动惯量J=mR2/4.该圆盘从静止开始在恒力矩M作用下转动,t秒后位于圆盘边缘上与轴AA的垂直距离为R的B点的切向加速度at=_____________,法向加速度an=_____________.16、一作定轴转动的物体,对转轴的转动惯量J=3.0kg·m2,角速度0=6.0rad/s.现对物体加一恒定的制动力矩M=-12N·m,当物体的角速度减慢到OMmmARRBRA=2.0rad/s时,物体已转过了角度=_________________.17、定轴转动刚体的角动量(动量矩)定理的内容是_______________________________________________________________________________________________,其数学表达式可写成_________________________________________________.动量矩守恒的条件是________________________________________________.18、长为l、质量为M的匀质杆可绕通过杆一端O的水平光滑固定轴转动,转动惯量为231Ml,开始时杆竖直下垂,如图所示.有一质量为m的子弹以水平速度0v射入杆上A点,并嵌在杆中,OA=2l/3,则子弹射入后瞬间杆的角速度=__________________________.19、力矩的定义式为______________________________________________.在力矩作用下,一个绕轴转动的物体作__________________________运动.若系统所受的合外力矩为零,则系统的________________________守恒.20、长为l的杆如图悬挂.O为水平光滑固定转轴,平衡时杆竖直下垂,一子弹水平地射入杆中.则在此过程中,_____________系统对转轴O的_______________守恒.21、一个圆柱体质量为M,半径为R,可绕固定的通过其中心轴线的光滑轴转动,原来处于静止.现有一质量为m、速度为v的子弹,沿圆周切线方向射入圆柱体边缘.子弹嵌入圆柱体后的瞬间,圆柱体与子弹一起转动的角速度=____________________________.(已知圆柱体绕固定轴的转动惯量J=221MR)22、两个质量都为100kg的人,站在一质量为200kg、半径为3m的水平转台的直径两端.转台的固定竖直转轴通过其中心且垂直于台面.初始时,转台每5s转一圈.当这两人以相同的快慢走到转台的中心时,转台的角速度=__________________.(已知转台对转轴的转动惯量J=21MR2,计算时忽略转台在转轴处的摩擦).23、一个有竖直光滑固定轴的水平转台.人站立在转台上,身体的中心轴线与转台竖直轴线重合,两臂伸开各举着一个哑铃.当转台转动时,此人把两哑铃水平地收缩到胸前.在这一收缩过程中,(1)转台、人与哑铃以及地球组成的系统机械能守恒否?为什么?(2)转台、人与哑铃组成的系统角动量守恒否?为什么?(3)每个哑铃的动量与动能守恒否?为什么?0vAO2l/3mOM
本文标题:第七章刚体转动习题
链接地址:https://www.777doc.com/doc-2208910 .html