您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 物理高考压轴题及变形练习2
1物理高考压轴题及变形练习21.13-24标I.水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R。在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,-l)和(0,0)点。已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动:B平行于x轴朝x轴正向匀速运动。在两车此后运动的过程中,标记R在某时刻通过点(l,l),求此时R的速度。假定橡皮筋的伸长是均匀的。2.12-20皖如图所示,半径为R均匀带电圆形平板,单位面积带电量为,求其轴线上任意一点P(坐标为x)的电场强度。3.13-23鲁.如图所示,在坐标系xoy的第一、第三象限内存在相同的匀强磁场,磁场方向垂直于xoy面向里;第四象限内有沿y轴正方向的匀强电场,电场强度大小为E.一质量为m、带电量为q的粒子自y轴的P点沿x轴正方向射入第四象限,经x轴上的Q点进入第一象限,随即撤去电场,以后仅保留磁场,经过一段时间后粒子将再次经过Q点,且速度与第一次过Q点时相同,求该粒子相邻两次经过Q点所用的时间。已知OP=d,OQ=2d,不计粒子重力。2(2)mdqE4.13-26纲.如图所示,虚线OL与y轴的夹角为θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。粒子在磁场中运动的轨道半径为R。粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。不计重力。求M点到O点的距离和粒子在磁场中运动的时间。π126TmtqBπ42TmtqB5.12-12津.如图所示,容器A中有电荷量相同的铀235和铀238两种离子从小孔S1不断飘入加速电场,其初速度可视为零,然后经过小孔S2垂直与磁场方向进入磁感应强度为B的匀强磁场中,若加速电压的大小在U±ΔU范围内微小变化,为使这两种离子在磁场中运动的轨迹不发生交叠,UU应小于多少?0.00636.12-25标.如图,一半径为R的圆表示一柱形区域的横截面(纸面)。在柱形区域内加一方向垂直于纸面的匀强磁场,一质量为m、电荷量为q的粒子沿图中直线在圆上的a点射入柱形区域,在圆上的b点离开该区域,离开时速度方向与直线垂直。圆心O到直线的距离为35R。现将磁场换为平等于纸面且垂直于直线的匀强电场,同一粒子以同样速度沿直线在a点射入柱形区域,也在b点离开该区域。若磁感应强度大小为B,不计重力,求电场强度的大小。2145qRBEm7.12-16琼图(a)所示的xOy平面处于匀强磁场中,磁场方向与xOy平面(纸面)垂直,磁感应强度B随时间t变化的周期为T,变化图线如图(b)所示。当B为+B0时,磁感应强度方向指向纸外。在坐标原点O有一带正电的粒子P,其电荷量与质量之比恰好等于2π/(TB0)。不计重力。设P在某时刻t0以某一初速度沿y轴正向自O点开始运动,将它经过时间T到达的点记为A。为了使直线OA与x轴的夹角为π/4,在0t0T/4的范围内,t0应取何值?08TtbOaROPx28.12-24京匀强电场的方向沿x轴正向,电场强度E随x的分布如图所示。图中E0和d均为已知量.将带正电的质点A在O点由静止释放.A离开电场足够远后,再将另一带正电的质点B放在O点也由静止释放,当B在电场中运动时,A.B间的相互作用力及相互作用能均为零:B离开电场后,A.B间的相作用视为静电作用.已知A的电荷量为Q.A和B的质量分别为m和.不计重力.为使B离开电场后不改变运动方向.求B所带电荷量的最大值qm169qQm9.12-23.鲁如图甲所示,相隔一定距离的竖直边界两侧为相同的匀强磁场区,磁场方向垂直纸面向里,在边界上固定两长为L的平行金属极板MN和PQ,两极板中心各有一小孔1S、2S,两极板间电压的变化规律如图乙所示,正反向电压的大小均为0U,周期为0T。在0t时刻将一个质量为m、电量为q(0q)的粒子由1S静止释放,粒子在电场力的作用下向右运动,在02Tt时刻通过2S垂直于边界进入右侧磁场区。(不计粒子重力,不考虑极板外的电场)若已保证了粒子未与极板相撞,为使粒子在03tT时刻再次到达2S,且速度恰好为零,求磁感应强度及以后粒子的可能运动。870mBqT10.08-14苏。在场强为B的水平匀强磁场中,一质量为m、带正电q的小球在O静止释放,小球的运动曲线如图所示.已知此曲线在最低点的曲率半径为该点到z轴距离的2倍,重力加速度为g.求:(1)小球在运动过程中第一次下降的最大距离ym.(2)当在上述磁场中加一竖直向上场强为qmgE的匀强电场时,小球从O静止释放后获得的最大速率mv.11.11-22闽。如图甲,在x<0的空间中存在沿y轴负方向的匀强电场和垂直于xoy平面向里的匀强磁场,电场强度大小为E,磁感应强度大小为B.一质量为m、电荷量为q(q>0)的粒子从坐标原点O处,以初速度v0沿x轴正方向射人,粒子的运动轨迹见图甲,不计粒子的重力。求该粒子运动到y=h时的速度大小v;现只改变人射粒子初速度的大小,发现初速度大小不同的粒子虽然运动轨迹(y-x曲线)不同,但具有相同的空间周期性,如图乙所示;同时,这些粒子在y轴方向上的运动(y-t关系)是简谐运动,且都有相同的周期T=2mqB。Ⅰ.求粒子在一个周期T内,沿x轴方向前进的距离s;Ⅱ.当入射粒子的初速度大小为v0时,其y-t图像如图丙所示,求该粒子在y轴方向上做简谐运动的振幅A,并写出y-t的函数表达式。312.12-22闽。如图甲所示,空间存在一范围足够大的垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。不计重力和粒子间的影响。如图乙,若在此空间再加入沿y轴正向、大小为E的匀强电场,让质量为m,电荷量为q(q>0)的粒子从坐标原点O以初速度v0沿y轴正向发射。研究表明:粒子在xOy平面内做周期性运动,且在任一时刻,粒子速度的x分量vx与其所在位置的y坐标成正比,比例系数与场强大小E无关。求该粒子运动过程中的最大速度值vm。13.13-36粤.如图19(a)所示,在垂直于匀强磁场B的平面内,半径为r的金属圆盘绕过圆心O的轴承转动,圆心O和边缘K通过电刷与一个电路连接,电路中的P是加上一定正向电压才能导通的电子元件。流过电流表的电流I与圆盘角速度ω的关系如图19(b)所示,其中ab段和bc段均为直线,且ab段过坐标原点。ω0代表圆盘逆时针转动。已知:R=3.0Ω,B=1.0T,r=0.2m。忽略圆盘、电流表和导线的电阻,作P的I-U图。14.12-11津。如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距L=0.5m,左端接有阻值R=0.3Ω的电阻,一质量m=0.1kg,电阻r=0.1Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的均强磁场中,磁场的磁感应强度B=0.4T。棒在水平向右的外力作用下,由静止开始a=2m/s2的加速度做匀加速运动,当棒的位移x=9m时撤去外力,棒继续运动一段距离后停下来。导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触,求全过程产生的焦耳热。5.4J15.13-25浙.为了降低潜艇噪音,提高其前进速度,可用电磁推进器替代螺旋桨.潜艇下方有左、右两组推进器,每组由6个相同的、用绝缘材料制成的直线通道推进器构成,其原理示意图如下.在直线通道内充满电阻率ρ=0.2Ω·m的海水,通道中a×b×c=0.3m×0.4m×0.3m的空间内,存在着由超导线圈产生的匀强磁场,其磁感应强度B=6.4T、方向垂直通道侧面向外.磁场区域上、下方各有a×b=0.3m×0.4m的金属板M、N,当其与推进器专用直流电源相连后,在两板之间的海水中产生了从N到M,大小恒为I=1.0×103A的电流,设该电流只存在于磁场区域.不计电源内阻及导线电阻,海水密度ρm≈1.0×103kg/m3.(1)求一个直线通道推进器内磁场对通电海水的作用力大小,并判断其方向.(2)在不改变潜艇结构的前提下,简述潜艇如何转弯?如何“倒车”?(3)当潜艇以恒定速度v0=30m/s前进时,海水在出口处相对于推进器的速度v=34m/s,思考专用直流电源所提供的电功率如何分配,求出相应功率的大小.v=34m/s数据不自洽吗?求P水时,用1s有细小差别,为什么?416.13-12津.超导体现象是20世纪人类重大发现之一,目前我国已研制出世界传输电流最大的高温超导电缆并成功示范运行。(1)超导体在温度特别低时电阻可以降到几乎为零,这种性质可以通过实验研究。将一个闭合超导金属圆环水平放置在匀强磁场中,磁感线垂直于圆环平面向上,逐渐降低温度使环发生由正常态到超导态的转变后突然撤去磁场,若此后环中的电流不随时间变化,则表明其电阻为零。请指出自上往下看环中电流方向,并说明理由。(2)为探究该圆环在超导状态的电阻率上限ρ,研究人员测得撤去磁场后环中电流为I,并经一年以上的时间t未检测出电流变化。实际上仪器只能检测出大于ΔI的电流变化,其中ΔI<<I,当电流的变化小于ΔI时,仪器检测不出电流的变化,研究人员便认为电流没有变化。设环的横截面积为S,环中定向移动电子的平均速率为v,电子质量为m、电荷量为e。试用上述给出的各物理量,推导出ρ的表达式。(3)若仍试用上述测量仪器,实验持续时间依旧为t,为使实验获得的该圆环在超导状态的电阻率上限ρ的准确程度更高,请提出你的建议,并简要说明实现方法。2mvSIetI17.13-33标I如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K,两气缸的容积均为V0气缸中各有一个绝热活塞(质量不同,厚度可忽略)。开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为p0和p0/3;左活塞在气缸正中间,其上方为真空;右活塞上方气体体积为V0/4。现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡。已知外界温度为T0,不计活塞与气缸壁间的摩擦。求:(i)恒温热源的温度T;(ii)重新达到平衡后左气缸中活塞上方气体的体积Vx。075TT012xVV18.13-24皖.如图所示,质量为M、倾角为α的斜面体(斜面光滑且足够长)放在粗糙的水平地面上,底部与地面的动摩擦因数为μ,斜面顶端与劲度系数为k、自然长度为l的轻质弹簧相连,弹簧的另一端连接着质量为m的物块。压缩弹簧使其长度为l43时将物块由静止开始释放,且物块在以后的运动中,斜面体始终处于静止状态。重力加速度为g。为使斜面始终处于静止状态,动摩擦因数μ应满足什么条件(假设滑动摩擦力等于最大静摩擦力)?μ≥sincos44cossin42klmgMgmgkl)(19.12-24皖如图所示,装置的左边是足够长的光滑水平面,一轻质弹簧左端固定,右端连接着质量M的小物块A。装置的中间是水平传送带,它与左右两边的台面等高,并能平滑对接。传送带始终以v0的速度逆时针转动。装置的右边是一光滑的曲面,质量m的小物块B从其上距水平台面h处由静止释放。已知物块B与传送带之间的摩擦因数u皮带长L。设物块A、B之间发生的是对心弹性碰撞,第一次碰撞前物块A静止且处于平衡状态。如果物块A、B每次碰撞后,物块A再回到平衡位置时都会立即被锁定,而当他们再次碰撞前锁定被解除,试求出物块B第n次碰撞后运动的速度大小。20.12-36粤图所示的装置中,小物块A、B质量均为m,水平面上PQ段长为l,与物块间的动摩擦因数为μ,其余段光滑。初始时,挡板上的轻质弹簧处于原长;长为r的连杆位于图中虚线位置;A紧靠滑杆(A、B间距大于2r)。随后,连杆以角速度ω匀速转动,带动滑杆作水平运动。A在滑杆推动下运动,并在脱离滑杆后与静止的B发生完全非弹性碰撞。分析AB的可能运动及条件。LAV0Bh5参考答案1由题意画出xOy坐标轴及A、B位置,设B车的速度为Bv,此时A、B的位置分别为H、G,H的纵坐标为分别为yA,G的横坐标为xB,则2122
本文标题:物理高考压轴题及变形练习2
链接地址:https://www.777doc.com/doc-2221729 .html