您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 线性回归(异方差的诊断、检验和修补)—SPSS操作
实验五异方差的检验与处理一、实验目的:1.掌握异方差检验的基本原理和方法2.掌握异方差的处理方法二、实验要求:1.利用SPSS实现异方差的检验与处理(一元与多元回归);2.掌握异方差检验的基本步骤和方法三、实验原理:1.异方差的检验方法:(1)残差图分析法(3种);(2)等级相关系数法:主要的步骤(见课本).2.异方差的处理方法:(1)加权最小二乘法:主要步骤与原理(2)方差稳定变换法四、实验例子:表4.1序号储蓄y(万元)居民收入x(万元)12648777210592103909954413110508512210979610711912740612747850313499943114269105881552211898167301295017663137791857514819196351512222116316170222880171578241271816542560419140026500201829276702122002830022201727430232105295602416002815025225032100262420325002725703525028172033500291900360003021003620031230038200(1)利用SPSS建立y对x普通最小二乘回归,Analyze——regression——linear,结果如下:VariablesEntered/Removedb居民收入(万元)a.EnterModel1VariablesEnteredVariablesRemovedMethodAllrequestedvariablesentered.a.DependentVariable:储蓄(万元)b.ANOVAb18440108118440108.04300.732.000a17782032961317.3362021831130RegressionResidualTotalModel1SumofSquaresdfMeanSquareFSig.Predictors:(Constant),居民收入(万元)a.DependentVariable:储蓄(万元)b.Coefficientsa-648.124118.163-5.485.000.085.005.95517.342.000(Constant)居民收入(万元)Model1BStd.ErrorUnstandardizedCoefficientsBetaStandardizedCoefficientstSig.DependentVariable:储蓄(万元)a.(2)提取残差,并作出残差图:40000300002000010000居民收入(万元)400.00000200.000000.00000-200.00000-400.00000UnstandardizedResidual从残差图可以看出,发现存在喇叭口形状,暗示着误差项具有明显的异方差性,误差随着x的增加呈现出增加的态势。(3)计算等级相关系数,并进行检验(具体步骤见课本),从结果可以看出,通过P值可以看到拒绝原假设,即残差绝对值与变量之间显著相关,存在异方差。序号储蓄y(万元)居民收入x(万元)xi等级残差ei|ei|残差|ei|等级di2id126487771169.0169.016-15225210592102-26.626.63-1139099543-104.6104.67-4164131105084-110.5110.58-4165122109795-159.4159.415-101006107119126-253.4253.423-172897406127477-25.125.1252585031349988.28.217499431142699-129.0129.0900105881552210-78.078.04636118981673011129.7129.71011129501766312102.7102.76636137791857513-145.5145.514-11148191963514-195.3195.319-525151222211631578.478.45101001617022288016413.0413.028-121441715782412717183.4183.418-111816542560418134.4134.4117491914002650019-195.5195.520-112018292767021134.4134.4129812122002830023452.1452.129-6362220172743020342.8342.827-7492321052956024250.4250.422242416002815022-135.2135.2139812522503210025180.4180.4178642624203250026316.5316.525112725703525028233.7233.7217492817203350027-468.2468.230-392919003600029-499.8499.831-243021003620030-316.7316.7264163123003820031-286.1286.124749Correlations1.000.686**..0003131.686**1.000.000.3131CorrelationCoefficientSig.(2-tailed)NCorrelationCoefficientSig.(2-tailed)N居民收入(万元)absRES_1Spearman'srho居民收入(万元)absRES_1Correlationissignificantatthe0.01level(2-tailed).**.(4)利用加权最小二乘估计对异方差进行处理,首先计算权数。Analyze——regression——weightestimation,结果如下根据以上结果可知,1.5m时对数似然函数达到最大,…….,(课本99页的一段分析),这说明加权最小二乘估计的效果好于普通最小二乘估计效果。五、练习与作用:(1)课本127页第9题;(2)课本102页例4.4的SPSS实现;(3)课本127页第13题.T4.9(1)由上表可得回归方程:y=-0.831+0.004x由残差图可以看出明显存在异方差,误差的方差随x的增加而增大。由上图可以看出相关系数rs=0.318,P值=0.021,认为残差绝对值与自变量x1显著相关,存在异方差。M=1.5的时候建立最优权函数,得由上表得,在y=-0.683+0.004x例4.4
本文标题:线性回归(异方差的诊断、检验和修补)—SPSS操作
链接地址:https://www.777doc.com/doc-2224870 .html