您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 福建省长乐第一中学高中数学《1.2应用举例(三)》教案新人教A版必修5
1福建省长乐第一中学高中数学必修五《1.2应用举例(三)》教案教学要求:能够运用正弦定理、余弦定理等知识和方法解决一些有关计算角度的实际问题.教学重点:熟练运用定理.教学难点:掌握解题分析方法.教学过程:一、复习准备:1.讨论:如何测量一个可到达的点到一个不可到达的点之间的距离?又如何测量两个不可到达点的距离?如何测量底部不可到达的建筑物高度?与前者有何相通之处?2.讨论:在实际的航海生活中,如何确定航速和航向?通法:转化已知三角形的一些边和角求其余边的问题二、讲授新课:1.教学角度的测量问题:①出示例1:甲、乙两船同时从B点出发,甲船以每小时10(3+1)km的速度向正东航行,乙船以每小时20km的速度沿南60°东的方向航行,1小时后甲、乙两船分别到达A、C两点,求A、C两点的距离,以及在A点观察C点的方向角.分析:根据题意,如何画图?→解哪个三角形?用什么定理?如何列式?→学生讲述解答过程(答案:630)→小结:解决实际问题,首先读懂题意,画出图形→再分析解哪个三角形,如何解?②练习:已知A、B两点的距离为100海里,B在A的北偏东30°,甲船自A以50海里/小时的速度向B航行,同时乙船自B以30海里/小时的速度沿方位角150°方向航行,问航行几小时,两船之间的距离最小?画出图形,并标记已知和要求的→解哪个三角形?用什么定理解?如何列式?③出示例2:某巡逻艇在A处发现北偏东45相距9海里的C处有一艘走私船,正沿南偏东75的方向以10海里/小时的速度向我海岸行驶,巡逻艇立即以14海里/小时的速度沿着直线方向追去,问巡逻艇应该沿什么方向去追?需要多少时间才追赶上该走私船?分析:如何画出方位图?→寻找三角形中的已知条件和问题?→如何解三角形.→师生共同解答.(答案:北偏东8331方向;1.4小时)④练习:某渔轮在A处测得在北45°的C处有一鱼群,离渔轮9海里,并发现鱼群正沿南75°东的方向以每小时10海里的速度游去,渔轮立即以每小时14海里的速度沿着直线方向追捕,问渔轮应沿什么方向,需几小时才能追上渔群?2.小结:(1)已知量与未知量全部集中在一个三角形中,依次利用正弦定理或余弦定理解之.(2)已知量与未知量涉及两个或几个三角形,这时需要选择条件足够的三角形优先研究,再逐步在其余的三角形中求出问题的解.三、巩固练习:1.我舰在敌岛A南偏西50相距12海里的B处,发现敌舰正由岛沿北偏西10的方向以10海里/小时的速度航行.问我舰需以多大速度、沿什么方向航行才能用2小时追上敌舰?2.某时刻A点西400千米的B处是台风中心,台风以每小时40千米的速度向东北方向直线前进,以台风中心为圆心,300千米为半径的圆称为“台风圈”,从此时刻算起,经过多长时间A进入台风圈?A处在台风圈中的时间有多长?23.作业:教材P22习题1.2A组2、3题.
本文标题:福建省长乐第一中学高中数学《1.2应用举例(三)》教案新人教A版必修5
链接地址:https://www.777doc.com/doc-2234086 .html