您好,欢迎访问三七文档
混合动力汽车的电机选型与调速仿真摘要:电机驱动系统是混合动力电动汽车(HEV)中的主要组成部分。研究开发体积小、重量轻、工作可靠、动态响应好的电机,对混合动力电动汽车进一步提高动力性和经济性极为重要。目前国内外比较重视BLDCM和SRM控制系统在混合动力电动汽车中的应用,随着计算机技术、电力电子技术和控制理论的发展,为了提高电机驱动系统的稳态、动态性能,智能控制、自适应、滑模变结构控制在电机控制系统应用的研究,引起国内外学者的广泛关注。本文主要运用MATLAB-SIMULINK软件中的交流电机库对电动汽车用的交流电动机的调速系统进行仿真,由仿真结果图直接认识交流系统的机械特性。重点对三相交流调压调速系统进行仿真研究,认识PID调节器参数的改变对系统性能的影响,认识该系统动态及静态性能的优劣及适用环境。1.前言在实际应用中,电动机作为把电能转换为机械能的主要设备,一是要具有较高的机电能量转换效率;二是应能根据生产机械的工艺要求控制和调节电动机的旋转速度。电动机的调速性能如何对提高产品质量、提高劳动生产率和节省电能有着直接的决定性影响。因此,调速技术一直是研究的热点[1][2]。而交流调速系统凭着其绝对的优势,最终必将取代直流调速系统[3]。交流电动机的调速系统不但性能同直流电动机的性能一样,而且成本和维护费用比直流电动机系统更低,可靠性更高[4]。到目前为止,日本除了个别的地方还继续采用直流电机外,几乎所有的调速系统都采用变频装置[6][7]。计算机仿真技术在交流调速系统的应用,使得对交流调速的性能分析和研究变的更为方便。传统的计算机仿真软件包用微分方程和差分方程建模,其直观性、灵活性差,编程量大,操作不便。随着一些大型的高性能的计算机仿真软件的出现,实现交流调速系统的实时仿真可以较容易地实现[8]。如:matlab软件已经能够在计算机中全过程地仿真交流调速系统的整个过程。matlab语言非常适合于交流调速领域内的仿真及研究,能够为某些问题的解决带来极大的方便并能显著提高工作效率。随着新型计算机仿真软件的出现,交流调速技术必将在成本控制、工作效率、实时监控等方面得到长足进步[9-12]。因此可以利用该软件对电动汽车的交流电机进行系统的动态性能仿真,为其选型及控制做好铺垫。2.电机调速原理与特性2.1交流电机调速原理与分类交流电机包括异步电动机和同步电动机两大类。对交流异步电动机而言,其转速为:min/)1(60rpsfn(2-1)从转速公式可知改变电动机的极对数p,改变定子供电功率f以及改变转率s都可达到调速的目的。对同步电动机而言,同步电动机转速为:min/601rpfn(2-2)由于实际使用中同步电动机的极对数p是固定的,因此只有采用变压变频(VVVF)调速,即通常说的变频调速。运用到实际中的交流调速系统主要有:变级调速系统、串级调速系统、调压调速系统、变频调速系统[1]。采用相控技术在输出电压波形中含有较大的谐波,会引起附加损耗,产生转矩脉动[15]。变压变频调速系统在调速时,须同时调节定子电源的电压和频率,在这种情况下,机械特性基本上平行移动,转差功率不变,它是当前交流调速的主要方向[16]。2.2电机调压调速电路2.2.1三相交流调压电路交流调压调速需要三相交流调压电路,晶闸管三相交流调压电路的接线方式很多,工业上常用的是三相全波星形连接的调压电路。如图2.1所示。这种电路的接法特点是负载输出谐波分量低,适用于低电压大电流的场合[11]。图2.1三相全波星形连接的调压电路在晶闸管交流调压中,晶闸管可借助于负载电流过零而自行关断,不需要另加换流装置,故线路简单、调试容易、维修方便、成本低廉,从而得到广泛的应用。2.2.2调压调速原理根据异步电动机的机械特性方程式2'21212'211'221'22'211//33llMLLsRRsRpUsRIPPT(2-3)其中p——电动机的极对数1U、1——电动机定子相电压和供电角频率s——转差率1R、'2R——定子每相电阻和折算到定子侧的转子每相电阻11L、'12L——定子每漏感和折算到定子侧的转子每相漏感可见,当转差率s一定时,电磁转矩T与定子电压1U的平方成正比。改变定子电压可得到一组不同的人为机械特性,如图2.2所示。在带恒转矩负载LT时,可以得到不同的稳定转速,如图中的A,B,C点,其调速范围较小,而带风机泵类负载时,可得到较大的调速范围,如图2.2中的D,E,F点。风机类负载特性100ABCDETNU17.0NU15.0NU11nnSSLTmTF图2.2异步电动机在不同定子电压时的机械特性所谓调压调速,就是通过改变定子外加电压来改变电磁转矩T,可得到较大的调速范围,从而在一定的输出转矩下达到改变电动机转速的目的[13]。为了能在恒转矩负载下扩大调压调速范围,使电机在较低速下稳定运行又不致过热,可采用电动机转子绕组有较高电阻值时的机械特性。在恒转矩负载下的交流力矩电动机的机械特性。图2.3显示此类电动机的调速范围增大了,而且在堵转转矩下工作也不致烧毁电动机[1][4]。ABC1nLTTNU1NU17.0NU15.0S001n图2.3交流力矩电机在不同定子电压时的机械特性2.2.3闭环控制的调压调速系统图2.4(a)是带转速负反馈的闭环调压调速系统原理图,图2.4(b)是相应的调速系统静特性。如果系统带负载LT在A点稳定运行,当负载增大导致转速下降时,通过转速反馈控制作用提高定子电压,使得转速恢复,即在新的一条机械特性上找到了工作点A。同理,当负载减小使得转速升高时,也可以得到新的工作点A。将工作点A、A、A连起来就是闭环系统的静特性[1]。ASRM3TGnGTnU*nUVVC(a)原理图ALTeT*n1U*n2U*n3U时的机械特性min1U时的机械特性N1UnAA(b)静特性图2.4转速负反馈闭环控制的交流调压调速系统在额定电压NU1下的机械特性和最小电压min1U下的机械特性是闭环系统静特性左右两边的极限,当负载变化达到两侧的极限时,闭环系统便失去控制能力,回到开环机械特性上工作[14]。对图2.4(a)所示的系统,可画出系统静态结构图,见图2.5所示:*nUASRctUsKLTnTUfn,11UnU图2.5异步电动机调压调速系统的静态结构图图中:ctSUUK1----晶闸管交流调压器VVC和触发装置GT的放大系数;ctU----触发装置的控制电压;nUn/----为转速反馈系数;nU----测速发电机TG输出的反馈电压。转速调节器ASR采用PI调节器;TUfn,1是由式(2-3)描述的异步电动机械特性方程,它是一个非线性函数。异步电动机调压调速的近似动态结构图如下所示:sWASRsWMAsWFBS)(sUnsUctsUisn)(*sUn)(sWVGT图2.6异步电动机调压调速系统的近似动态结构图图中各环节的传递函数为:(1)转速调节器ASR常用PI调节器消除静差并改善动特性,其传递函数为:STSTKSWnnnASR1(2-4)(2)晶闸管交流调压器和触发装置GT-V假定该环节输入输出关系是线性的,在动态中可近似为一阶惯性环节,其近似条件与晶闸管触发与整流装置一样。本环节传递函数可表示为:1TsSKSWSVGT(2-5)(3)测速反馈环节FBS考虑到反馈滤波的作用,传递函数为:1STSWonFBS(2-6)(4)异步电动机MA由于描述异步电动机动态过程是一组非线性微分方程,只用一个传递函数来准确的表示异步电动机在整个调速范围内的输入输出关系式不可能的。只有做出一定的假设,并用稳态工作点附近微偏线性化的方法才能得到近似的传递函数。3.系统的建模和模型参数设置3.1主电路的建模和参数设置主电路主要由三相对称交流电压源、晶闸管、晶闸管三相交流调压器、交流异步电动机、电机信号分配器等部分组成。下面分别讨论三相交流电源、三相交流调压器、同步脉冲触发器、交流异步电动机、电机测试信号分配器的建模和参数设置问题[16]。3.1.1三相交流电源的建模和参数设置首先从图3.1中的电源模块组中选取一个交流电压源模块,再用复制的方法得到三相电源的另两个电压源模块,并把模块名称分别修改成A相、B相、C相。然后从图3.2中的链接器模块组中选取“ground”元件也复制成三份,按图3.3所示连接即可图3.1Simulink中的电源模块图3.2Simulink中的连接模块图3.3三相交流电源的模型为了得到三相对称交流电压源,对其参数设置:双击A相交流电压源图标打开参数设置对话框,A相得参数设置分别是:幅值(peakamplitude)取220V、初相位(Phase)设置成0、频率(Frequency)设置为50HZ,其他为默认值。B、C的参数设置方法与A相相同,除了将初相位设置成互差120以外,其它参数都与A相相同。由此可得到三相对称交流电源[4]。3.1.2晶闸管三相交流调压器的建模与参数设置晶闸管三相交流调压器通常是采用三对反并联的晶闸管元件组成,单个晶闸管元件采用“相位控制”方式,利用电网自然换流。图3.4中所示为晶闸管三相交流调压器的仿真模型。图3.4晶闸管三相交流调压器仿真模型子系统触发脉冲的顺序为V1-V2-V3-V4-V5-V6,其中V1-V3-V5之间和V4-V6-V2之间互差120度,V1-V4之间、V3-V6之间、V5-V2之间互差180度。双击晶闸管对话框得到晶闸管参数设置图,根据图中要求及系统要求对其进行参数设置如下:电阻(ResistanceRon):40;电感(InductanceLon):0H;正向电压(ForwardvoltageVf):0.8V;初始电流(InitialcurrentIc):0A;缓冲器电阻(SubberresistanceRs):1200;缓冲器电容(SubbercapacitanceCs):250F。上图是用单个晶闸管元件按三相交流调压器的接线要求搭建成仿真模型的,单个晶闸管的参数设置仍然遵循晶闸管整流桥的参数设置原则,具体如下:如果针对某个具体的变流装置进行参数设置,对话框中的参数应取默认值进行仿真,若仿真结果理想,就可认可这些设置的参数,若仿真结果不理想,则通过仿真实验,不断进行参数优化,最后确定其参数。这一参数设置原则对其它环节的参数设置也是适用的[18]。打开Maskeditor:Subsystem对话框,如图3.5所示。使用此编辑器可以对封装后的子系统进行各种编辑。在默认情况下,封装子系统不使用图标。但友好的子系统图标可使子系统的功能一目了然。为了增强封装子系统的界面友好性,用户可以自定义子系统模块的图标。只需在途中编辑对话框中的“图标和端口”选项卡中“绘制命令”栏中使用MATLAB中相应便可以绘制模块图标,并可设置不同的参数控制图标界面的显示[20]。图3.5子系统封装编辑器下图为晶闸管三相交流调压器子系统封装图如下所示:aUbUcUabcP图3.6三相交流调压器子系统封装图图中,Ua,Ub,Uc分别连接三相交流电源的三相,P连接从脉冲触发器出来的触发脉冲,输出a,b,c分别连接交流电动机的A,B,C输入[4]。3.1.3同步脉冲触发器的建模和参数设置通常,工程上将触发器和晶闸管整流桥作为一个整体来研究,所以,在此处讨论同步脉冲触发器。同步脉冲触发器包括同步电源和6脉冲触发器两部分。6脉冲触发器可以从图3.7所示的附加模块(ExtrasControlBlocks)子模块组获得。图3.7附加模块(ExtrasControlBlocks)子模块6脉冲触发器需要三相线电压同步,所以同步电源的任务是将三相交流电源的相电压转换成线电压。同步电源与6脉冲触发器符号图如下所示[4]:图3.8同步脉冲触发器子系统同步脉冲触发器封装后子系统符合如下:UaUbUcIn2UctOut图3.9同步脉冲触发器封装后子系统符号然后根据主电路的连接关系,建立起主电路的仿真模型。图3.10中ln2
本文标题:汽车电子-方思贞
链接地址:https://www.777doc.com/doc-2248800 .html