您好,欢迎访问三七文档
汽车自动控制系统ESP电子车身稳定装置ESP系统实际是一种牵引力控制系统,与其他牵引力控制系统比较,ESP不但控制驱动轮,而且可控制从动轮。如后轮驱动汽车常出现的转向过多情况,此时后轮失控而甩尾,ESP便会刹慢外侧的前轮来稳定车子;在转向过少时,为了校正循迹方向,ESP则会刹慢内后轮,从而校正行驶方向。ESP系统包含ABS(防抱死刹车系统)及ASR(防侧滑系统),是这两种系统功能上的延伸。因此,ESP称得上是当前汽车防滑装置的最高级形式。ESP系统由控制单元及转向传感器(监测方向盘的转向角度)、车轮传感器(监测各个车轮的速度转动)、侧滑传感器(监测车体绕垂直轴线转动的状态)、横向加速度传感器(监测汽车转弯时的离心力)等组成。控制单元通过这些传感器的信号对车辆的运行状态进行判断,进而发出控制指令。有ESP与只有ABS及ASR的汽车,它们之间的差别在于ABS及ASR只能被动地作出反应,而ESP则能够探测和分析车况并纠正驾驶的错误,防患于未然。ESP对过度转向或不足转向特别敏感,例如汽车在路滑时左拐过度转向(转弯太急)时会产生向右侧甩尾,传感器感觉到滑动就会迅速制动右前轮使其恢复附着力,产生一种相反的转矩而使汽车保持在原来的车道上。当然,任何事物都有一个度的范围,如果驾车者盲目开快车,现在的任何安全装置都难以保全。ASR加速防滑控制系统ASR-AccelerationSkidcontrolsystem加速防滑控制系统,或AccelerationStabilityRetainer加速稳定保持系统,顾名思义就是防止驱动轮加速打滑的控制系统,其目的就是要防止车辆尤其是大马力的车子,在起步、再加速驱动轮打滑的现象,以维持车辆行驶方向的稳定性,保持好的操控性及最适当的驱动力,达到有好的行车安全。但是您可能并不清楚为什么轮胎打滑会造成车辆行驶方向的不稳定呢!其原因与煞车时ABS会避免轮胎锁死的道理是相同的,主要是轮胎能产生的力量在同一负载是有一定的,一般轮胎除了要产生使车辆前进的驱动力外,也要产生使车辆转弯的转向力,或者是使车辆停止的煞车力,因此不论是单纯产生驱动力、转向力、煞车力,或同时产生驱动力及转向力、煞车力及转向力,其轮胎产生的总合的力量在某一负载条件下是一定的,也就是说当前进急起动造成轮胎打滑时,而此打滑的现象系指轮胎所有的抓地力全部用在驱动力上,因此此时能控制车子转弯的转向力,由於力量全部被驱动力使用掉,因此将会失去使车辆转弯或保持车行方向的转向力,因而会造成车行方向不稳定的现象。ABS防抱死制动系统防抱死制动系统ABS全称是Anti-lockBrakeSystem,即ABS,可安装在任何带液压刹车的汽车上。它是利用阀体内的一个橡胶气囊,在踩下刹车时,给予刹车油压力,充斥到ABS的阀体中,此时气囊利用中间的空气隔层将压力返回,使车轮避过锁死点。当车轮即将到达下一个锁死点时,刹车油的压力使得气囊重复作用,如此在一秒钟内可作用60~120次,相当于不停地刹车、放松,即相似于机械的“点刹’。因此,ABS防抑死系统,能避免在紧急刹车时方向失控及车轮侧滑,使车轮在刹车时不被锁死,不让轮胎在一个点上与地面摩擦,从而加大摩擦力,使刹车效率达到90%以上,同时还能减少刹车消耗,延长刹车轮鼓、碟片和轮胎两倍的使用寿命。装有ABS的车辆在干柏油路、雨天、雪天等路面防滑性能分别达到80%—90%、30%—10%、15%—20%。ASR牵引力控制系统ASR全称:AccelerationSlipRegulation-----驱动(轮)防滑系统。它属于汽车主动安全装置。又称牵引力控制系统防止车辆尤其是大马力车在起步、再加速时驱动轮打滑现象,以维持车辆行驶方向的稳定性。另:自动服务器恢复,可监视服务器性能,并在发生关键故障后使服务器恢复到正常运行状态ASR的作用:它的主要目的是防止汽车驱动轮在加速时出现打滑,(特别是下雨下雪冰雹路冻等摩擦力较小的特殊路面上,当汽车加速时将滑动率控制在一定的范围内,从而防止驱动轮快速滑动。它的功能一是提高牵引力;二是保持汽车的行驶稳定。行驶在易滑的路面上,没有ASR的汽车加速时驱动轮容易打滑;如是后驱动的车辆容易甩尾,如是前驱动的车辆容易方向失控。有ASR时,汽车在加速时就不会有或能够减轻这种现象。在转弯时,如果发生驱动轮打滑会导致整个车辆向一侧偏移,当有ASR时就会使车辆沿着正确的路线转向;最重要的是车辆转弯时,一旦驱动轮打滑就会全车一侧偏移,这在山路上极度危险的,有ASR的车刚一般不会发生这种现象。ASR的原理:ASR是ABS的升级版,它在ABS上加装可膨胀液压装置、增压泵、液压压力筒、第四个车轮速度传感器,复杂的电子系统和带有其自身控制器的电子加速系统。在驱动轮打滑时ASR通过对比各轮子转速,电子系统判断出驱动轮打滑,自动立刻减少节气门进气量,降低引擎转速,从而减少动力输出,对打滑的驱动轮进行制动。减少打滑并保持轮胎与地面抓地力的最合适的动力输出,这时候无论你怎么给油,在ASR介入下,会输出最适合的动力。BAS制动辅助系统制动力辅助系统(BAS):BAS英文全称为BrakeAssistSystem(制动力辅助系统)。据统计,在紧急情况下有90%的汽车驾驶员踩刹车时缺乏果断,制动辅助系统正是针对这一情况而设计。它可以从驾驶员踩制动踏板的速度中探测到车辆行驶中遇到的情况,当驾驶员在紧急情况下迅速踩制动踏板,但踩踏力又不足时,此系统便会在不到1秒的时间内把制动力增至最大,缩短紧急制动情况下的刹车距离。BA刹车辅助BA机械制动辅助系统,也成为BAS。为EBA电子紧急制动辅助装置的前身。能判断驾驶者刹车动作,在紧急刹车时增加刹车力,缩短刹车距离。它根据驾驶员踩下踏板的力度及速度、将制动力适时加大,从而提供一个有效、可靠、安全的制动。对老人和女性(脚力不足者)帮助奇大。还有缩短制动距离的效果。制动力辅助系统(BAS):BAS英文全称为BrakeAssistSystem(制动力辅助系统)。据统计,在紧急情况下有90%的汽车驾驶员踩刹车时缺乏果断,制动辅助系统正是针对这一情况而设计。它可以从驾驶员踩制动踏板的速度中探测到车辆行驶中遇到的情况,当驾驶员在紧急情况下迅速踩制动踏板,但踩踏力又不足时,此系统便会在不到1秒的时间内把制动力增至最大,缩短紧急制动情况下的刹车距离。CAN-BUS控制器局域网CAN(ControllerAreaNetwork)即控制器局域网络。是应用在现场、在微机化测量设备之间实现双向串行多节点数字通讯系统,是一种开放式、数字化、多点通信的底层控制网络。CAN协议建立在ISO/OSI模型之上,其模型结构有三层。协议分为Can2.0A,CAN2.0B,CANopen几种。CAN-BUS即CAN总线技术,全称为“控制器局域网总线技术(ControllerAreaNetwork-BUS)”。CAN总线的通讯介质可采用双绞线,同轴电缆和光导纤维。通讯距离与波持率有关,最大通讯距离可达10km,最大通讯波持率可达1Mdps。CAN总线仲裁采用11位标识和非破坏性位仲裁总线结构机制,可以确定数据块的优先级,保证在网络节点冲突时最高优先级节点不需要冲突等待。CAN总线采用了多主竞争式总线结构,具有多主站运行和分散仲裁的串行总线以及广播通信的特点。CAN总线上任意节点可在任意时刻主动地向网络上其它节点发送信息而不分主次,因此可在各节点之间实现自由通信。CAN总线协议已被国际标准化组织认证,技术比较成熟,控制的芯片已经商品化,性价比高,特别适用于分布式测控系统之间的数据通讯。DSC动态稳定控制系统性能类似德国博世公司的ESP(电子稳定系统)可在汽车高速运动时,提供良好的操控性,防止车辆发生甩尾或者漂移现象,从而获得精准的操控性。是电子主动安全保护系统的一种。由于ESP名称已经被德国博世公司注册。故其他公司开发的电子稳定系统只能使用其他名称。如DSC。EBD电子制动力分配系统EBD能够根据由于汽车制动时产生轴荷转移的不同,而自动调节前、后轴的制动力分配比例,提高制动效能,并配合ABS提高制动稳定性。汽车在制动时,四只轮胎附着的地面条件往往不一样。比如,有时左前轮和右后轮附着在干燥的水泥地面上,而右前轮和左后轮却附着在水中或泥水中,这种情况会导致在汽车制动时四只轮子与地面的摩擦力不一样,制动时容易造成打滑、倾斜和车辆侧翻事故。EBD用高速计算机在汽车制动的瞬间,分别对四只轮胎附着的不同地面进行感应、计算,得出不同的摩擦力数值,使四只轮胎的制动装置根据不同的情况用不同的方式和力量制动,并在运动中不断高速调整,从而保证车辆的平稳、安全。EBA紧急制动辅助系统在正常情况下,大多数驾驶员开始制动时只施加很小的力,然后根据情况增加或调整对制动踏板施加的制动力。如果必须突然施加大得多的制动力,或驾驶员反应过慢,这种方法会阻碍他们及时施加最大的制动力。许多驾驶员也对需要施加比较大的制动力没有准备,或者他们反应得太晚。EBA通过驾驶员踩踏制动踏板的速率来理解它的制动行为,如果它察觉到制动踏板的制动压力恐慌性增加,EBA会在几毫秒内启动全部制动力,其速度要比大多数驾驶员移动脚的速度快得多。EBA可显著缩短紧急制动距离并有助于防止在停停走走的交通中发生追尾事故。EBA系统靠时基监控制动踏板的运动。它一旦监测到踩踏制动踏板的速度陡增,而且驾驶员继续大力踩踏制动踏板,它就会释放出储存的180巴的液压施加最大的制动力。驾驶员一旦释放制动踏板,EBA系统就转入待机模式。由于更早地施加了最大的制动力,紧急制动辅助装置可显著缩短制动距离空气悬挂空气悬挂也并不是最近几年才研发的新技术,它们的基本技术方案相似,主要包括内部装有压缩空气的空气弹簧和阻尼可变的减震器两部分。与传统钢制汽车悬挂系统相比较,空气悬挂具有很多优势,最重要的一点就是弹簧的弹性系数也就是弹簧的软硬能根据需要自动调节。例如,高速行驶时悬挂可以变硬,以提高车身稳定性,长时间低速行驶时,控制单元会认为正在经过颠簸路面,以悬挂变软来提高减震舒适性。另外,车轮受到地面冲击产生的加速度也是空气弹簧自动调节时考虑的参数之一。例如高速过弯时,外侧车轮的空气弹簧和减震器就会自动变硬,以减小车身的侧倾,在紧急制动时电子模块也会对前轮的弹簧和减震器硬度进行加强以减小车身的惯性前倾。因此,装有空气弹簧的车型比其它汽车拥有更高的操控极限和舒适度。我们以装备在Maybach上的AIRMATIC.DC空气悬挂系统为简例说明弹簧软硬的变化。弹簧的弹性系数是通过橡胶皮腔中空气的流量来调节的。在短波路面或高速过弯时,皮腔中的部分气体会被锁定,在皮腔受压时,空气流量减小,令弹簧变硬,以减小车身起伏和提高车身稳定性。在普通路面上,所有空气都可以自由流动,皮腔受压时,空气流量加大,从而提供柔软的弹簧和最大程度的行驶舒适性。Maybach的空气悬挂中的空气始终保持6-10个巴的压力。空气悬挂还将传统的底盘升降技术融入其中。高速行驶时,车身高度自动降低,从而提高贴地性能确保良好的高速行驶稳定性同时降低风阻和油耗。慢速通过颠簸路面时,底盘自动升高,以提高通过性能。另外,空气悬挂系统还能自动保持车身水平高度,无论空载满载,车身高度都能恒定不变,这样在任何载荷情况下,悬挂系统的弹簧行程都保持一定,从而使减震特性基本不会受到影响。因此即便是满载情况下,车身也很容易控制。这的确是平台技术的一个飞跃。在采用相似的设计方案的同时各厂家的技术又完全不相同。BENZ是空气悬挂技术的前辈,它首次将橡胶皮腔放置在金属外壳内,令皮腔受压时的弹性特性接近钢簧,另外,皮腔中还加入了一个特殊的纤维,从而使皮腔更坚固,寿命更长。AUDI在此基础上改变了纤维的排布方向,使弹簧的钢度进一步提高等等。在一些底盘升降的具体指标上各厂商也存在不同。例如Maybach与Phaeton在车速超过140Km/h后,车身高度自动下降1.5cm,当车速降回70Km/h以下时,车身又恢复正常高度,而A8的这两个速度指标则分别为120Km/h和100Km/h,在自动减震模式下和Sport减震
本文标题:汽车自动控制系统
链接地址:https://www.777doc.com/doc-2249751 .html