您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 位似图形课件-(1)
①PA②③④⑤BCDEF..1.前面我们已经学习了图形的哪些变换?相似:相似比.平移:平移的方向,平移的距离.注:图形这些不同的变换是我们学习几何必不可少的重要工具,它不但装点了我们的生活,而且是学习后续知识的基础.回顾与反思下面请欣赏如下图形的变换旋转:(中心对称)旋转中心,旋转方向,旋转角度.轴对称:对称轴,这样的放大缩小,没有改变图形形状,经过放大或缩小的图形,与原图形是相似的,因此,我们可以得到真实的图片和满意的照片.在日常生活中,我们经常见到这样一类相似的图形,例如,放映幻灯时,通过光源,把幻灯片上的图形放大到屏幕上(如图显示了它工作的原理).对应点的连线相交于一点如何探究这两个相似图形之间的内在关系呢?除对应点连线外,我们还可以怎样去探究?第一组对应边:第二组对应边:对应边互相平行第三组对应边:观察与思考☞下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?对应边有何位置关系?概念与性质1.位似图形的概念如果两个图形不仅相似,而且每组对应点所在的直线都经过同一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.这时两个相似图形的相似比又叫做它们的位似比.相似对应点的连线相交一点对应边平行•作出下列位似图形的位似中心:OO判断下面的正方形是不是位似图形?(1)不是ACDBFEG显然,位似图形是相似图形的特殊情形.相似图形不一定是位似图形,可位似图形一定是相似图形思考:位似图形有何性质?观察下图中的五个图,回答下列问题:(1)在各图中,位似图形的位似中心与这两个图形有什么位置关系?位似中心可以在两个图形的同侧,或两个图形之间,或图形内还可以在一个图形的边上或顶点.议一议☞∵△OAB∽△OA′B′∴CAACCOOCAOA0性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.(2)在各图中,任意一对对应点到位似中心的距离比与位似比有什么关系?2.位似图形的性质(2)位似图形上任意一对对应点到位似中心的距离之比等于相似比.概念与性质(3)位似图形中的对应线段平行(或在一条直线上).(1)位似图形是相似图形,具备相似图形的所有性质•若△ABC与△A’B’C’的相似比为:1:2,则OA:OA’=()。OAA’BCB’C’1:22.分别在线段OA、OB、OC、OD上取点A'、B'、C'、D',使得3.顺次连接点A'、B'、C'、D',所得四边形A'B'C'D'就是所要求的图形.21''''ODODOCOCOBOBOAOAODABCA'B'C'D'利用位似,可以将一个图形放大或缩小.例如,要把四边形ABCD缩小到原来的1/2,1.在四边形外任选一点O(如图),对于上面的问题,还有其他方法吗?如果在四边形外任选一个点O,分别在OA、OB、OC、OD的反向延长线上取A‘,B’、C‘、D’,使得呢?如果点O取在四边形ABCD内部呢?分别画出这时得到的图形.21''''ODODOCOCOBOBOAOAODABCA'B'C'D'ODABC探究3.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.是位似图形。位似中心是点A,位似比是1:2。2.如图,以O为位似中心,将△ABC放大为原来的两倍.OABC①作射线OA、OB、OC②分别在OA、OB、OC上取点A'、B'、C'使得1'''2OAOBOCOAOBOC③顺次连结A'、B'、C'就是所要求图形A'B'C'DEFAOBCDEFAOBC对应点连线都交于____________对应线段__________________________位似中心平行或在一条直线上DEFAOBCDEFOABC利用位似可以把一个图形放大或缩小1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍.图形与画法回味无穷一位似图形的概念:如果两个图形不仅形状相同,而且所在的直线都经过同一个点,那么这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.二位似图形的性质:1.位似图形是相似图形,具备相似图形的所有性质2.位似图形上的任意一对对应点到位似中心的距离之比等于位似比3.位似图形中的对应线段平行(或在一条直线上).课堂小结1.画出基本图形2.选取位似中心3.根据条件确定对应点,并描出对应点4.顺次连结各对应点,所成的图形就是所求的图形三、位似图形的画法:课堂小结
本文标题:位似图形课件-(1)
链接地址:https://www.777doc.com/doc-2256672 .html