您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 流体力学复习资料,亲自整理。
第一章绪论1.重度:指流体单位体积所受的重力,以γ表示。对于非均质流体:对于均质流体:单位:牛/米3(N/m3)不同流体ρ、γ不同,同一流体ρ、γ随温度和压强而变化。在1标准大气压下:表1.1(P5)蒸馏水:4ºC,密度1000kg/m3,重度9800N/m3;水银:0ºC,密度13600kg/m3,重度133280N/m3;空气:20ºC,密度1.2kg/m3,重度11.76N/m3;2.粘性流体平衡时不能抵抗剪切力,即平衡时流体内部不存在切应力。流体在运动状态下具有抵抗剪切变形能力的性质,称为粘性。内摩擦切应力τ=T/AT=FA为平板与流体的接触面积。粘性只有在流体运动时才显示出来,处于静止状态的流体,粘性不表现有任何作用。由牛顿流体的条件可知,若流体速度为线性分布(板距h、速度u0不大)板间y处的流速为:切应力为:系数μ称为流体的动力粘性系数、动力粘度、绝对粘度;limVGdGVdV0GmggVVuuyh0uh0若流体速度u为非线性分布流体内摩擦切应力τ:凡是内摩擦力按该定律变化的流体称为牛顿流体,如空气、水、石油等;否则为非牛顿流体。牛顿流体切应力与速度梯度是通过原点的线性关系。非牛顿流体塑性流体:如牙膏、凝胶等有一初始应力,克服该应力后其切应力才与速度梯度成正比。假塑性流体:如新拌混凝土、泥石流、泥浆、纸浆速度梯度较小时,τ对速度梯度变化率较大;速度梯度较大时,τ对速度梯度的变化率逐渐降低。胀塑性流体:如乳化液、油漆、油墨等速度梯度较小时,τ对速度梯度变化率较小;速度梯度较大时,τ对速度梯度的变化率渐变大。3.流体的运动粘度是动力粘性系数μ与其密度ρ之比,用ν表示若两种流体密度相差不多,单从ν值不好判断两者粘性大小。只适用于判别同一流体(密度近似恒定)温度、压强不同时粘性变化。动力粘度μ的单位是牛·秒/米2(N·s/m2)或帕·秒(Pa·s);运动粘度ν的单位是米2/秒(m2/s)。dudy液体和气体的粘度变化规律截然不同:液体的运动粘度系数随温度升高而减小;气体的运动粘性系数随温度升高而增大。原因:两者粘性产生的原因不同液体产生粘性的主要原因是液体分子间的内聚力(引力),分子间距小,内聚力较强,阻止质点间相对滑动而产生内摩擦力,表现液体粘性。当温度升高时,分子间距增大,分子间内聚力减小,阻止相对滑动的内摩擦力减小,所以粘性减小。气体产生粘性的主要原因是气体分子不规则热运动,在相邻流体层间发生动量的交换,阻止质点间相对滑动,呈现出粘性。当温度升高时,气体分子不规则热运动增强,分子交换频繁,动量交换加剧,阻止相对滑动的内摩擦力增大,所以粘性增大。粘性只有在流体运动时才显示出来,处于静止状态的流体,粘性不表现有任何作用。理想流体:一种假想的无粘性的流体,μ=0。实际不存在,只是一种假想的物理模型;认为流体在运动时不存在内摩擦力。流体力学的研究方法:将实际流体假想为理想流体,找出运动规律后,再考虑粘性影响,修正后用于实际流体。4.压缩性和膨胀性流体的密度、体积会随着温度、压强的变化而改变。温度一定时,流体体积随压强的增加而缩小的特性称为流体的压缩性;压强一定时,流体体积随温度的升高而增大的特性称为流体的膨胀性。液体压缩性大小以体积压缩系数βp表示当温度一定时,每增加单位压强所引起的体积相对变化量米2/牛因为压强增加,体积减小,故冠以负号,使βp永为正值。也可用密度ρ的变化代替体积V的变化因ρ=m/V,当液体质量m为定值时,有则:pdVmddVdpmdpdp2111弹性模量E:体积压缩系数的倒数pdVVdVdpVdp1dVmd2pE1液体的膨胀性大小用体积膨胀系数βt表示当压强一定时,每增加单位温度所产生的体积相对变化量,即1/ºC压强与温度的变化,引起气体体积的显著变化,密度或重度也随之变化。其关系用完全气体状态方程表示p为气体的绝对压强,牛/米2;T为气体的绝对温度,K;R为气体常数,,牛·米/千克·开。干燥空气分子量29,R=287;中等潮湿空气R=288。为研究问题方便,将流体的压缩系数和膨胀系数都看作零,为不可压缩流体。该流体的体积与温度、压强无关,其密度和重度为恒定常数。绝对不可压缩流体不存在。欧拉提出了流体的连续介质假说:采用连续介质作为流体宏观流动模型即不考虑流体分子的存在,将真实流体看成是由无限多流体质点组成的稠密、无间隙的连续介质流体质点:指流体中宏观尺寸非常小而微观尺寸又足够大的任意一个物理实体。概念要点:1、宏观尺寸非常2、小微观尺寸足够3、在任何时刻都具有一定的宏观物理量4、质点与质点之间没有空隙,流体质点的形状可任意划定。tdVVdVdtVdt1pVmRTpRTRM8314第二章流体静力学流体静力学研究流体在外力作用下处于平衡状态时的力学规律及其在工程实际中的应用。1.质量力:作用在所研究流体的每个质点(或微团质量中心)上,并与质量成正比的力。质量力不是通过两种物质的直接接触施加,又称长程力;对于均质流体,质量力与流体体积成正比,又称体积力;最常见的质量力:重力、惯性力。单位质量力:单位质量流体所承受的质量力。对于均质流体:m--流体总质量;G--总质量力;X、Y、Z--单位质量力在直角坐标轴三个方向分量,即单位质量分力单位:m/s2,与加速度的单位相同。2、表面力表面力:相邻流体或固体作用于流体的表面、大小与作用面积成比例的力。与流体直接接触的其他物体(流体、固体)的作用而产生,又称接触力、近程力。包括压应力(压强)和摩擦应力。对于平衡流体:不存在切向摩擦力;只有沿受压表面内法线方向的压力,称为流体静压力。流体静压强的特性:(1)流体静压强的方向必然重合于受力面的内法线方向。(2)平衡流体中任意点的静压强值只由该点的位置坐标决定,而与该压强的作用方向无关。流体中任意质点各个方向受到的压强值大小相等欧拉平衡微分方程,沿XYZ方向分别为:压强微分方程;欧拉平衡微分方程的综合形式用此式可求压强。等压面的性质:1)等压面为等势面2)等压面与单位质量力垂直等压面方程静止液体中压强分布规律单位质量力在各轴上的投影为:X=0Y=0Z=-g代入压强微分方程有:xGXmyGYmzGZm()dpXdxYdyZdz0ZdzYdyXdx()dpXdxYdyZdzdzgdzdzgdp)(2211pzpz积分得:(静止液体中压强的分布规律,称流体静力学基本方程。)求各点压强:绝对压强、相对压强、真空度实际计算中常采用两种方法计量压强值:绝对压强和相对压强。(1)绝对压强以绝对真空或完全真空为零点计量的压强,表示压强的全部值,即(2)相对压强(表压强)以当时当地大气压强pa为零点计量的压强。(3)真空度绝对压强总是正值,相对压强有正有负。若某点绝对压强小于大气压强,说明该点存在真空。绝对压强小于当地大气压强的数值就是真空度pv。存在真空的点,相对压强为负值,真空度为正值。真空有时也称为负压。流体静力学基本方程的几何意义与能量意义几何意义cpzhpp0hppahpppa'vappp——位置水头——测压管高度或相对压强高度——静压高度或绝对压强高度相对压强高度与绝对压强高度,均称压强水头。位置高度与测压管高度之和如,称为测压管水头。位置高度与静压高度之和,静压水头。①静止液体中各点位置水头和测压管高度可相互转换,但各点测压管水头却永远相等,即敞口测压管最高液面处于同一水平面——测压管水头面。②静止液体中各位置水头和静压高度亦可相互转换,但各点静压水头永远相等,即闭口玻璃管最高液面处在同一水平面——静压水头面。能量意义(物理意义)比位能,单位重量液体对基准面O-O的位能比压能,单位重量液体所具有的压力能比势能,单位重量液体对基准面具有的势能DCBAzzzz,,,'Ap'BpCpDp'AApzCCpzzppz意义:在同一静止液体中,各点处比位能可以不等,比压能也可不同,但其比位能与比压能可相互转化,比势能总相等,是常量。能量守恒定律在静止液体中的体现。标准大气压(atm)1atm=760mm汞柱=1.01325×105Pa=10.3m水柱工程大气压(at)1at=735.6mm汞柱=9.8×104Pa=10m水柱1bar=0.987atm倾斜测压管:(斜管压力计)测微压,用于测量p1、p2的压差。通常θ为固定值,若量得l值,即可计算出压强。金属压力表用于测定较大的压强,是测量压强的主要仪器优点:携带方便、装置简单、安装容易、测读方便、经久耐用。构造:常用的一种弹簧测压计,见右图。原理:其内装有一端开口、一端封闭的黄铜管,开口端与被测液体连通,测压时由于压强作用,黄铜管随压强增加而伸展,从而带动封闭端所连的扇形齿轮带动指针偏转,表盘上显示的就是液体相对压强值。平面壁上的总压力(注意坐标系的建立方法,以液面为基础建立x轴。)hsinpphpl122总压力:总压力的作用点(压力中心)(记住常见的受压面的转动惯量)cPhAcDccIzzzA第三章流体动力学1、迹线--拉格朗日法指流体质点的运动轨迹,表示流体质点在一段时间内的运动情况。如图曲线AB就是质点M的迹线。在迹线上取一微元长度dl,表示该质点在dt时间内的位移微元,则速度在各轴的分量为则可得到迹线的轨迹微分方程为:2、流线--欧拉法指在流场中某一瞬间作出的一条空间曲线,使同一时刻在该曲线上各位置的流体质点所具有的流速方向与曲线在该位置的切线方向重合。流线仅表示某一瞬时,处在这一流线各位置上的各流体质点的运动情况流线的重要特征:同一时刻的不同流线,相互不可能相交。流线的微分方程:流线是某一瞬时处在流线上的无数流体质点的运动情况,时间是参变量;迹线则是一个质点在一段时间内运动的轨迹,时间是自变量。xyzdxudtdyudtdzudtxyzdxdydzdtuuuxyzdxdydzuuu定常流动流场中,流体质点的一切运动要素都不随时间变化,只是坐标的函数,这种流动为定常流动如容器中水位保持不变的出水孔口处的流体的稳定泄流,是定常流动,其流速和压强不随时间变化,为形状一定的射流。如离心式水泵,若其转速一定,则吸水管中流体运动是定常流动工程中大部分流体运动均可近似看作定常流动非定常流动流体质点的运动要素是时间和坐标的函数——非定常流动如p=p(x,y,z,t)u=u(x,y,z,t)如容器中的水位不断下降,经孔口流出的液体速度和压强等随时间而变化,其孔口出流是非定常流动。过流断面与微小流束或总流中各条流线相垂直的横断面,称为此微小流束或总流的过流断面(又称过水断面)一般来说,过流断面上各点的运动要素是不等的;但对于微元流束的同一过流断面上各点的运动要素在同一时刻可认为相等。流量:单位时间内通过过流断面的流体量体积流量Q质量流量MQ=M/ρ微元流束的体积流量dQ:过流断面面积与流速的乘积Dq=udA总流的体积流量Q:同一过流断面上所有微小流束的流量和Q=∫udA流速:点速、均速均速:体积流量与过水断面面积的比值AudAQvAA定常流动中,流线形状不随时间改变,流线与迹线重合。非定常流动中,流线的形状随时间改变,流线与迹线不重合液体的平均流速为:对于均质不可压缩流体(ρ为常数)流体的连续性方程为:AudAQvAAyxzuuuxyz0总流的连续性方程:对于不可压缩的密度不变的流体,它的通过每个截面的总流量相等,即:物理意义:不可压缩流体做定常流动时,总流的体积流量保持不变;各过水断面平均流速与过水断面面积成反比,即过水断面面积↑处,流速↓;过水断面面积↓处,流速↑。若沿程有流量流入或流出,总流的连续性方程仍然适用,只是形式有所不同。不可压缩无粘性流动的伯努利方程:对于同一流线上任意两点,有粘性流
本文标题:流体力学复习资料,亲自整理。
链接地址:https://www.777doc.com/doc-2264478 .html