您好,欢迎访问三七文档
分析热轧钢和正火钢的强化方式和主强化元素又什么不同,二者的焊接性有何差别?在制定焊接工艺时要注意什么问题?答:热轧钢的强化方式有:(1)固溶强化,主要强化元素:Mn,Si。(2)细晶强化,主要强化元素:Nb,V。(3)沉淀强化,主要强化元素:Nb,V.;正火钢的强化方式:(1)固溶强化,主要强化元素:强的合金元素(2)细晶强化,主要强化元素:V,Nb,Ti,Mo(3)沉淀强化,主要强化元素:Nb,V,Ti,Mo.;焊接性:热轧钢含有少量的合金元素,碳当量较低冷裂纹倾向不大,正火钢含有合金元素较多,淬硬性有所增加,碳当量低冷裂纹倾向不大。热轧钢被加热到1200℃以上的热影响区可能产生粗晶脆化,韧性明显降低,而是、正火钢在该条件下粗晶区的V析出相基本固溶,抑制A长大及组织细化作用被削弱,粗晶区易出现粗大晶粒及上贝氏体、M-A等导致韧性下降和时效敏感性增大。制定焊接工艺时根据材料的结构、板厚、使用性能要求及生产条件选择焊接方法。分析Q345的焊接性特点,给出相应的焊接材料及焊接工艺要求?答:Q345钢属于热轧钢,其碳当量小于0.4%,焊接性良好,一般不需要预热和严格控制焊接热输入,从脆硬倾向上,Q345钢连续冷却时,珠光体转变右移,使快冷下的铁素体析出,剩下富碳奥氏体来不及转变为珠光体,而转变为含碳量高的贝氏体与马氏体具有淬硬倾向,Q345刚含碳量低含锰高,具有良好的抗热裂性能,在Q345刚中加入V、Nb达到沉淀强化作用可以消除焊接接头中的应力裂纹。被加热到1200℃以上的热影响区过热区可能产生粗晶脆化,韧性明显降低,Q345钢经过600℃×1h退火处理,韧性大幅提高,热应变脆化倾向明显减小。;焊接材料:对焊条电弧焊焊条的选择:E5系列。埋弧焊:焊剂SJ501,焊丝H08A/H08MnA.电渣焊:焊剂HJ431、HJ360焊丝H08MnMoA。CO2气体保护焊:H08系列和YJ5系列。预热温度:100~150℃。焊后热处理:电弧焊一般不进行或600~650℃回火。电渣焊900~930℃正火,600~650℃回火Q345与Q390焊接性有何差异?Q345焊接工艺是否适用于Q390焊接,为什么?答:Q345与Q390都属于热轧钢,化学成分基本相同,只是Q390的Mn含量高于Q345,从而使Q390的碳当量大于Q345,所以Q390的淬硬性和冷裂纹倾向大于Q345,其余的焊接性基本相同。Q345的焊接工艺不一定适用于Q390的焊接,因为Q390的碳当量较大,一级Q345的热输入叫宽,有可能使Q390的热输入过大会引起接头区过热的加剧或热输入过小使冷裂纹倾向增大,过热区的脆化也变的严重。低合金高强钢焊接时,选择焊接材料的原则是什么?焊后热处理对焊接材料有什么影响?答:选择原则:考虑焊缝及热影响区组织状态对焊接接头强韧性的影响。由于一般不进行焊后热处理,要求焊缝金属在焊态下应接近母材的力学性能。中碳调质钢,根据焊缝受力条件,性能要求及焊后热处理情况进行选择焊接材料,对于焊后需要进行处理的构件,焊缝金属的化学成分应与基体金属相近。比较Q345、T-1钢、2.25Cr-Mo和30MnSiA的冷裂、热裂和消除应裂纹的倾向.答:1、冷裂纹的倾向:Q345为热扎钢其碳含量与碳当量较底,淬硬倾向不大,因此冷裂纹敏感倾向较底。T-1钢为低碳调质钢,加入了多种提高淬透性的合金元素,保证强度、韧性好的低碳自回火M和部分下B的混合组织减缓冷裂倾向,2.25Cr-1Mo为珠光体耐热钢,其中Cr、Mo能显著提高淬硬性,控制Cr、Mo的含量能减缓冷裂倾向,2.25-1Mo冷裂倾向相对敏感。30CrMnSiA为中碳调质钢,其母材含量相对高,淬硬性大,由于M中C含量高,有很大的过饱和度,点阵畸变更严重,因而冷裂倾向更大。2、热裂倾向Q345含碳相对低,而Mn含量高,钢的Wmn/Ws能达到要求,具有较好的抗热裂性能,热裂倾向较小。T-1钢含C低但含Mn较高且S、P的控制严格因此热裂倾小。30CrMnSiA含碳量及合金元素含量高,焊缝凝固结晶时,固-液相温度区间大,结晶偏析严重,焊接时易产生洁净裂纹,热裂倾向较大。3、消除应力裂纹倾向:钢中Cr、Mo元素及含量对SR产生影响大,Q345钢中不含Cr、Mo,因此SR倾向小。T-1钢令Cr、Mo但含量都小于1%,对于SR有一定的敏感性;SR倾向峡谷年队较大,2.25Cr-Mo其中Cr、Mo含量相对都较高,SR倾向较大。珠光体耐热钢的焊接性特点与低碳调质钢有什么不同?珠光体耐热钢选用焊接材料的原则与强度用钢有什么不同?为什么?答:珠光体耐热钢和低碳调质钢都存在冷裂纹,热影响区硬化脆化以及热处理或高温长期使用中的再热裂纹,但是低碳调质钢中对于高镍低锰类型的刚有一定的热裂纹倾向,而珠光体耐热钢当材料选择不当时才可能常产生热裂纹。珠光体耐热钢在选择材料上不仅有一定的强度还要考虑接头在高温下使用的原则,特别还要注意焊接材料的干燥性,因为珠光体耐热钢是在高温下使用有一定的强度要求。不锈钢焊接时,为什么要控制焊缝中的含碳量?如何控制焊缝中的含碳量?答:焊缝中的含碳量易形成脆硬的淬火组织,降低焊缝的韧性,提高冷裂纹敏感性。碳容易和晶界附近的Cr结合形成Cr的碳化物Cr23C6,并在晶界析出,造成“贫Cr”现象,从而造成晶间腐蚀。选择含碳量低的焊条和母材,在焊条中加入Ti,Zr,Nb,V等强碳化物形成元素来降低和控制含氟中的含碳量。为什么18-8奥氏体不锈钢焊缝中要求含有一定数量的铁素体组织?通过什么途径控制焊缝中的铁素体含量?答:焊缝中的δ相可打乱单一γ相柱状晶的方向性,不致形成连续,另外δ相富碳Cr,又良好的供Cr条件,可减少γ晶粒形成贫Cr层,故常希望焊缝中有4%~12%的δ相。通过控制铁素体化元素的含量,或控制Creq/Nieq的值,来控制焊缝中的铁素体含量。18-8型不锈钢焊接接头区域在那些部位可能产生晶间腐蚀,是由于什么原因造成?如何防止?答:18-8型焊接接头有三个部位能出现腐蚀现象:{1}焊缝区晶间腐蚀。产生原因根据贫铬理论,碳与晶界附近的Cr形成Cr23C6,并在在晶界析出,导致γ晶粒外层的含Cr量降低,形成贫Cr层,使得电极电位下降,当在腐蚀介质作用下,贫Cr层成为阴极,遭受电化学腐蚀;{2}热影响区敏化区晶间腐蚀。是由于敏化区在高温时易析出铬的碳化物,形成贫Cr层,造成晶间腐蚀;{3}融合区晶间腐蚀{刀状腐蚀}。只发生在焊Nb或Ti的18-8型钢的融合区,其实质也是与M23C6沉淀而形成贫Cr有关,高温过热和中温敏化连过程依次作用是其产生的的必要条件。防止方法:{1}控制焊缝金属化学成分,降低C%,加入稳定化元素Ti、Nb;{2}控制焊缝的组织形态,形成双向组织{γ+15%δ};{3}控制敏化温度范围的停留时间;{4}焊后热处理:固溶处理,稳定化处理,消除应力处理。简述奥氏体不锈钢产生热裂纹的原因?在母材和焊缝合金成分一定的条件下,焊接时应采取何种措施防止热裂纹?答:产生原因:{1}奥氏体钢的热导率小,线膨胀系数大,在焊接局部加热和冷却条件下,接头在冷却过程中产生较大的拉应力;{2}奥氏体钢易于联生结晶形成方向性强的柱状晶的焊缝组织,有利于杂质偏析,而促使形成晶间液膜,显然易于促使产生凝固裂纹;{3}奥氏体钢及焊缝的合金组成较复杂,不仅S、P、Sn、Sb之类杂质可形成易溶液膜,一些合金元素因溶解度有限{如Si、Nb},也易形成易溶共晶。防止方法:{1}严格控制有害杂质元素{S、P—可形成易溶液膜};{2}形成双向组织,以FA模式凝固,无热裂倾向;{3}适当调整合金成分:Ni15%,适当提高铁素体化元素含量,使焊缝δ%提高,从而提高抗裂性;Ni15%时,加入Mn、W、V、N和微量Zr、Ta、Re{0.01%}达到细化焊缝、净化晶界作用,以提高抗裂性;{4}选择合适的焊接工艺。奥氏体钢焊接时为什么常用“超合金化”焊接材料?答:为提高奥氏体钢的耐点蚀性能,采用较母材更高Cr、Mo含量的“超合金化”焊接材料。提高Ni含量,晶轴中Cr、Mo的负偏析显著减少,更有利于提高耐点蚀性能。从双相不锈钢组织转变的角度出发,分析焊缝中Ni含量为什么比母材高及焊接热循环对焊接接头组织,性能有何影响?答:双相不锈钢的合金以F模式凝固,凝固结束为单相δ组织,随着温度的下降,开始发生δ→γ转变不完全,形成两相组织。显然,同样成分的焊缝和母材,焊缝中γ相要比母材少得多,导致焊后组织不均匀,韧性、塑性下降。提高焊缝中Ni含量,可保证焊缝中γ/δ的比例适当,从而保证良好的焊接性。在焊接加热过程,整个HAZ受到不同峰值温度的作用,最高接近钢的固相线,但只有在加热温度超过原固溶处理温度区间,才会发生明显的组织变化,一般情况下,峰值低于固溶处理的加热区,无显著组织变化,γ/δ值变化不大,超过固溶处理温度的高温区,会发生晶粒长大和γ相数量明显减少,紧邻溶合线的加热区,γ相全部溶于δ相中,成为粗大的等轴δ组织,冷却后转变为奥氏体相,无扎制方向而呈羽毛状,有时具有魏氏组织特征。为什么Al-Mg及al-li合金焊接时易形成气孔?al及其合金焊接时产生气孔的原因是什么?如何防止气孔?为什么纯铝焊接易出现分散小气孔?而al-mg焊接时易出现焊接大气孔?答:1)氢是铝合金及铝焊接时产生气孔的主要原因。2)氢的来源非常广泛,弧柱气氛中的水分,焊接材料以及母材所吸附的水分,焊丝及母材表面氧化膜的吸附水,保护气体的氢和水分等都是氢的来源。3)氢在铝及其合金中的溶解度在凝点时可从0.69ml/100g突降至0.036mol/100g相差约20倍,这是促使焊缝产生气孔的重要原因之一。4)铝的导热性很强,熔合区的冷速很大,不利于气泡的浮出,更易促使形成气孔//防止措施:1)减少氢的来源,焊前处理十分重要,焊丝及母材表面的氧化膜应彻底清除。2)控制焊接参数,采用小热输入减少熔池存在时间,控制氢溶入和析出时间3)改变弧柱气氛中的性质//原因:1)纯铝对气氛中水分最为敏感,而al-mg合金不太敏感,因此纯铝产生气孔的倾向要大2)氧化膜不致密,吸水强的铝合金al-mg比氧化膜致密的纯铝具有更大的气孔倾向,因此纯铝的气孔分数小,而al-mg合金出现集中大气孔3)Al-mg合金比纯铝更易形成疏松而吸水强的厚氧化膜,而氧化膜中水分因受热而分解出氢,并在氧化膜上冒出气泡,由于气泡是附着在残留氧化膜上,不易脱离浮出,且因气泡是在熔化早期形成有条件长大,所以常造成集中大的气孔。因此al-mg合金更易形成集中的大气孔。分析高强度铝合金焊接接头性能低于母材的原因及防止措施,焊后热处理对焊接接头性能有什么影响?什么情况下对焊接接头进行焊后热处理?原因:1)晶粒粗化,降低塑性,晶界液化产生显微裂纹2)非时效强化铝合金haz软化,主要发生在焊前经冷作硬化的合金上,经冷作硬化的铝合金,haz峰值温度超过再结晶温度(200-300)区域就产生明显软化3)时效强化铝合金haz软化,由于第二相脱溶析出聚集长大发生过时效软化//防止措施:1)采用小的焊接热输入2)对al-zn-mg合金,焊后经自然时效可逐步恢复或接近母材的水平//热处理对接头性能的影响:1)焊后不热处理接头强度均低于母材,特别是在时效状态下焊接的硬铝,即使焊后人工热处理,接头强度系数也未超过60%2)al-zn-mg合金强度与焊后自然时效长短有关系,随自然时效的增长,强度可接近母材。/要求焊缝有足够的强度,则焊后要热处理;焊后要洗掉焊剂残渣,以防焊件腐蚀分析灰铸铁同质焊缝产生冷裂纹(热应力裂纹)的原因及防止措施,铸铁冷裂纹与钢的焊接冷裂纹相同吗?答:原因:铸铁型同质焊缝较长或补焊部位刚度较大时,即使焊缝没有白口或马氏体组织也可能产生裂纹。在500摄氏度以下的原因,一方面是由于铸铁在较高温度下有一定塑性,另一方面是此时焊缝高温承受的应力也小。其裂纹源为片状石墨的尖端位置;此处非常尖锐,应力集中系数大,抗拉强度低、塑性差,止裂能力也差;故冷裂纹倾向较差。防止措施:整体高温预热,加入一定量合金元素或提高碳含量,采用塑性好的镍基或铜基铸铁焊接材料。与
本文标题:材料焊接性课后答案
链接地址:https://www.777doc.com/doc-2284996 .html