您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 极射赤平投影CAD图解及其在岩质边坡稳定性分析中的应用
极射赤平投影CAD图解及其在岩质边坡稳定性分析中的应用一、序言岩质边坡稳定性分析方法有许多,但无论是平面滑动的单一楔形断面滑体、单滑块和多滑块分析法,还是楔体滑动的仿平面分析法、楔体分割法、立体分析法、霍克分析法以及《岩土工程勘察规范》(GB50021-94)推荐法等,在计算边坡稳定性系数时,需要知道滑体控制平面(包括结构面和坡面、坡顶面)或直线(包括平面的法线)的地质产状,以及平面与平面、直线与直线、直线与平面间夹角等。其中平面和直线的产状可以通过现场测量获取,除此之外的几何参数,在没有发明极射赤平投影之前,都是用计算法求得,不仅它们的计算公式复杂,而且计算过程繁琐,也很容易出错。如果采用极射赤平投影求解边坡稳定性分析所需的几何参数,那就可以简化这些几何参数的计算过程,而且一般情况下只需要在现场测量出各个控制平面的地质产状即可。二、极射赤平投影的基本原理(一)投影要素极射赤平投影(以下简称赤平投影)以圆球作为投影工具,其进行投影的各个组成部分称为投影要素,包括:1.投影球(也称投射球):以任意长为半径的球。2.球面:投影球的表面称为球面。3.赤平面(也称赤平投影面):过投影球球心的水平面。4.大圆:通过球心的平面与球面相交而成的圆,统称为大圆(如图一(a)中ASBN、PSFN、NESW),所有大圆的直径相等,且都等于投影球的直径。当平面直立时,与球面相交成的大圆称为直立大圆(如图一(a)中PSFN);当平面水平时,与球面相交成的大圆称为赤平大圆或基圆(如图一(a)中NESW);当平面倾斜时,与球面相交成的大圆称为倾斜大圆(如图一(a)中ASBN)。5.小圆:不过球心的平面与球面相而成的圆,统称为小圆(如图一(b)、(c)中AB、CD、FG、PACB)。当平面直立时,与球面相交成的小圆称为直立小圆(如图一(b)中DC);当平面水平时,与球面相交成的小圆称为水平小圆(如图一(b)中AB);当平面倾斜时,与球面相交成的小圆称为倾斜小圆(如图一(b)中FG或图一(c)中PACB)。6.极射点:投影球上两极的发射点(如图一),分上极射点(P)和下极射点(F)。由上极射点(P)把下半球的几何要素投影到赤平面上的投影称为下半球投影;由下极射点(F)把上半球的几何要素投影到赤平面上的投影称为上半球设影。一般采用下半球投影。7.极点:通过球心的直线与球面的交点称为极点,一条直线有两个极点。铅直线交球面上、下两个点(也就是极射点);水平直线交基圆上两点;倾斜直线交球面上两点(如图五中A、B)。(二)平面的赤平投影平面与球面相交成大圆或小圆,我们把大圆或小圆上各点和上极射点(P)的连线与赤平面相交各点连线称为相应平面的赤平投影。1.过球心平面的赤平投影随平面的倾斜而变化:倾斜平面的赤平投影为大圆弧(如图二中的NB′S);直立平面的赤平投影是基圆的一条直径(如图一(a)中的NS);水平面的赤平投影就是基圆(如图一中的NESW)。2.不过球心平面的赤平投影也随平面倾斜而变化:直立平面的赤平投影是基圆内的一条圆弧(如图三KD′H);倾斜平面的赤平投影有以下三种情况:⑴当倾斜小圆在赤平面以下时,投影是一个圆,且全部在基圆之内(如图三FG);⑵当倾斜小圆全部位于上半球时,投影也是一个圆,但全部在基圆之外;⑶当倾斜小圆一部分在上半球,另一部分在下半球时,赤平面以下部分的投影在基圆之内,以上部分的投影在基圆之外。当球面小圆通过上极射点时,其赤平投影为一条直线(如图一(c)中PACB的投影为AB);水平小圆的赤平投影在基圆内(如图四中A′B′),A′B′是一个与基圆同心的圆。(三)直线的赤平投影直线AB的投影点就是其极点A、B和极射点P的连线与赤平面的交点A′、B′。铅直线的投影点位于基圆中心;过球心的水平直线的投影点就是基圆上两个极点,两点间距离等于基圆直径;倾斜直线的投影点有两个,一点在基圆内,另一个在基圆外,两点呈对蹼点,在赤平投影图上两点的角距相差180°(如图五)。(四)吴氏网及其CAD制作目前广泛使用的极射赤平投影有等角距投影网和等面积投影网。等角距投影网是由吴尔福发明的,简称吴氏网;等面积投影网是由施密特发明的,简称施氏网。两者的主要区别在于:球面上大小相等的小圆在吴氏网上的投影仍然是圆,投影圆的直径角距相等,但由于在赤平面上所处位置不同,投影圆的大小不等,其直径随着投影圆圆心与基圆圆心的距离增大而增大。而在施氏网上的投影则呈四级曲线,不成圆,但四级曲线所构成的图形面积是相等的,且等于球面小圆面积的一半。使用吴氏网求解面、线间的角距关系时,旋转操作显示其优越性,不仅作图方便,而且较为精确。而使用施氏网时,可以作出面、线的极点图或等密度图,能够真实反映球面上极点分布的疏密,有助于对面、线群进行统计分析,但其存在作图麻烦等缺点。1.吴氏网的结构及成图原理吴氏网(图六)由基圆、南北经向大圆弧(NGS)、东西纬向小圆弧(ACB)等经纬线组成。标准吴氏网的基圆直径为20cm,经、纬线间的角距为2°。(1)基圆,由指北方向(N)为0°,顺时针方向刻出360°,这些刻度起着量度方位角的作用;(2)经向大圆弧是由一系列通过球心,走向南北,分别向西和向东倾斜,倾角由0°到90°(角距间隔为2°)的许多赤平投影大圆弧所组成。这些大圆弧与东西直径线EW的交点到端点(E点和W点)的距离分别代表各平面的倾角。如图六中GW表示的大圆弧NGS所代表的平面向西倾斜,倾角为30°。(3)纬向线是由一系列走向东西的直立平面的赤平投影小圆弧所组成。这些小圆弧离基圆的圆心O愈远,其所代表的球面小圆的半径角距就愈小,反之离圆心O愈近,则半径角距就愈大。相邻纬向小圆弧间的角距也是2°,它分割南北直径线的距离,与经向大圆弧分割东西径线的距离是相等的。如图六所示,ED=SH=WG=NF,角距都为30°。2.吴氏网的CAD图解绘制吴氏网,其实质就是在赤平大圆上画出经向大圆弧和纬向小圆弧。那么这些大圆弧和小圆弧都是怎样是绘制出来的呢?在没有CAD制图系统软件以前,人们通过平面几何关系利用圆规、直尺等原始工具绘制,其绘制过程很复杂。而在CAD制图系统软件下,绘制大圆弧和小圆弧是非常简的,下面就介绍它们的原理和绘制过程。(1)绘制大圆弧的原理与步骤要绘制大圆弧,应至少知道大圆弧上的三个点N、S、B′(如图二所示),其中N、S点是每条大圆弧都必须经过的,是已知点。现在只要能确定经向大圆弧与东西径线EW的交点B′,问题就迎刃而解。①计算OB′长度根据倾斜平面的倾角、基圆的直径,可按下式计算点O与点B′之间的距离(公式一)式中R——基圆的半径;α——大圆弧所代表平面的倾角(°)。②以基圆的圆心为圆心,OB′长为半径画一个圆,该圆与基圆的东西径向线EW交于B′点。③过N、S、B′三个点画一个圆,并剪掉基圆外部分,大圆弧也就绘制完成。(2)绘制小圆弧的原理与步骤要绘制半径角距为的小圆弧,同样也应至少知道小圆弧上的三个点(如图六所示的A、C、B三个点)。根据吴氏网的结构与原理,可以通过CAD制图确定A、C、B三个点的位置。①确定点C,首先用公式一计算点O与点C间距离,但其中为小圆弧的半径角距;然后以基圆的圆心为圆心,OC长为半径画圆,该圆与基圆的南北径向线NS交于C点。②以基圆的圆心为基点,将南北径线ON分别逆时针和顺时针旋转角度,得两条直线,分别与基圆交于A、B点。③过A、C、B三个点画一个圆,并剪掉基圆外部分,小圆弧也就绘制完成。三、赤平投影网CAD图解的应用利用传统标准吴氏网对平面、直线进行投影时,一般步骤是:把透明纸(或透明胶片等)蒙在吴氏网上,画基圆及“十”字网心,并用针固定于网心上,使透明纸能够绕网心旋转。然后在透明纸上标出E、S、W、N,以正北(N)为0°,顺时针数到360°。东西直径EW确定倾角,一般是圆周为0°,至圆心为90°。这样做具有以下缺点:一是较麻烦,二是当旋转透明纸时,容易从针孔处发生破裂而移位;三就是准确性不高;四是效率低。如果用CAD制图,则可避免上述不足,且使作图更简化,用不着吴氏网中的那么多的经、纬线,只需要画出基圆及其南北径线和东西径线。1.平面赤平投影的CAD图解(如图七)例1:一平面产状126°∠30°,绘制其赤平投影图。(1)绘制一直径为20cm的基圆,同时画出铅直和水平两条直径,并标出E、S、W、N。后面的例子均需要这一步,画法与之相同,所以不再重复。(2)平面的倾向是126°,则其走向为36°。将南北径线绕基圆的圆心O顺时针旋转36°到达AB位置,与基圆交于A、B两点,则AB就是平面的走向线。(3)以基圆的圆心O为基点,将射线ON顺时针旋转126°到达OD位置,与基圆相交于点D,则OD即为该平面的倾向线。(4)用公式一计算线段OC长度。以基圆的圆心O为圆心,OC为半径画圆,交OD于C点。(5)采用三点法,即过A、C、B三点画圆,并切掉基圆外部分,所得大圆弧ACB即为该平面的赤平投影。2.直线赤平投影的CAD图解(如图八)例2:一直线产状330°∠40°,绘制其赤平投影图。(1)将ON绕圆心O顺时针旋转330°后到达OA位置,与基圆交于点A,则OA即为该直线的倾伏向。(2)用公式一计算OA′值。以基圆的圆心O为圆心,OA′为半径画圆,交OA于A′点,则点A′即为该直线的赤平投影。3.平面法线赤平投影的CAD图解(如图九)例3:一平面产状为105°∠40°,绘制其法线的赤平投影。(1)按例1所述方法,绘制产状为105°∠40°平面的赤平投影大圆弧NB′S。(2)平面法线的倾角与平面的倾角之和等于90°,因此平面法线的倾角为50°。用公式一计算OA′。以基圆的圆心O为圆心,OA′为半径画圆,交B′O的延长线于A′点,则A′点为该平面法线的赤面投影,也称其为平面的极点。由于平面法线倾向与平面倾向相反,相差180°,平面法线的倾角与平面的倾角之和等于90°,因此也可根据平面法线产状与平面产状间的这种关系,首先计算法线的产状为285°∠50°,然后再按例2方法绘制法线的赤平投影。4.相交两条直线所构成平面的产状例4:已知两直线180°∠20°和90°∠32.3°相交,用赤平投影法求解这两条直线所构成平面的产状(如图十(a)、(b))。(1)为很好地利用CAD制图解决这个问题,引入两条直线倾角与平面倾角间的关系式:tan2βsin2γ=tan2α1+tanα2-2tanα1tanα2cosγ(公式二)式中β——两条相交直线所构成平面的倾角(°);α1、α2——分别为两条直线的倾伏角(°);γ——两条直线倾向夹角(°)。用公式二计算两条直线所构成平面的倾角为β=36.13°。(2)确定投影大圆弧的圆心O′,点O′应在线段C′F′的垂直平分线上。要确定点O′的位置,需要用下列公式计算平面的赤平投影大圆弧的半径。计算出赤平投影大圆弧的半径后,再以点C′或者点F′为圆心画圆,与线段C′F′的垂直平分线相交于点O′。(公式三)式中R’——赤平投影大圆弧的半径;R——基圆的半径。(3)确定平面的走向AB:以O′为圆心,以为半径画圆,与基圆相交于两点A、B,则AB即为所求平面的走向,为30°。由此算出该平面的倾向为120°。因此所求平面产状为120°∠36°。此外,两条直线所构所平面的倾向,也可由下式计算确定:(公式四)式中——平面倾向与直线1倾向之差;其余符号意义同公式二。5.相交两条直线的夹角及其角平分线例5:用赤平投影法求解例4两条直线的夹角及其角平分线(图十(c))。(1)按例4作法,确定两条直线所构成平面的赤平投影,即大圆弧AF′C′B,其产状约为120°∠36°。(2)量取大圆弧上C′与F′间的角距为54°,即相交两条直线的夹角为54°。该圆弧C′F′段的角距平分点G′(27°)就是相交两条直线夹角平分线的赤平投影,由此可以确定两条相交直线夹角平分线的产状为139.67°∠34.51°。除上述作图法外,还可用下式计算两条相交直线的夹角:(公式五)式中——两条相交直线的夹角(°);其余符号的意义同前。6.平面上一直线的倾伏和侧伏(如图十一)例6:已知平面产状180°∠
本文标题:极射赤平投影CAD图解及其在岩质边坡稳定性分析中的应用
链接地址:https://www.777doc.com/doc-2288832 .html