您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 植物激素脱落酸ABA受体的研究
植物激素脱落酸ABA受体的研究摘要脱落酸ABA(abscisicacid,ABA)是一种重要的植物激素,参与高等植物生长发育、抗逆等诸多生理过程。近些年发现的能与ABA结合并发挥受体功能的有FCA(FloweringControlLocusA)、ABAR/CHLH(Mg离子螯合酶H亚基)、GCR2(G蛋白偶联受体)、GTG1/2(GPCR-typeGprotein1/2)和PYR/PYL/RCAR(pyrabactinresistant/PYR-like/regulatorycomponentofABA),其中PYR/PYL/RCAR被普遍认为是真正的ABA受体蛋白。目前ABA受体的研究主要集中在拟南芥和水稻等几个模式植物中。本文概述了以上几种ABA受体的研究进展,重点介绍以PYR/PYL/RCAR为受体在ABA信号传导途径中的作用模式,旨在为ABA受体及其信号转导通路的相关研究提供参考。关键词脱落酸;ABA受体;信号转导ResearchonAbscisicAcid(ABA)ReceptorinplantsAbstractAbscisicacid(ABA)isakeyplantstresshormone,whichinvolvedinmanyimportantprocessesofgrowthanddevelopmentinhigherplants.Recentyears,FCA(FloweringControlLocusA),ABAR/CHLH(HsubunitofthechloroplastMg2+-chelatase),GCR2(G-proteinCoupledReceptor)、GTG1/2(GPCR-typeGprotein1/2),PYR/PYL/RCAR(pyrabactinresistant/PYR-like/regulatorycomponentofABA)wasfoundcoundbondwithABAandfunctionasABAReceptor.PYR/PYL/RCARisconsideredtobethemostwidelystudiedABAreceptor.Currently,mostresearchfocusesonseveralmodelplantssuchasArabidopsisandrice.ThispaperdescribestheresearchprogressofseveralkindofABAreceptorabove,highlightingthePYR/PYL/RCARasABAreceptorsinthemodeofactionoftheABAsignaltransductionpathway,ToresearchfortheABAreceptoranditssignaltransductionpathway.Keywordsabscisicacid,ABAreceptor,signaltransduction.1ABA激素的发现ABA广泛产生于自然界的真菌,植物以及一些后生动物中[1,2],在被子植物中首次被发现并被很好地被阐述[3]。1963年F.T.addincontt等于棉铃中提纯了一种能显著促进棉苗外植体叶柄脱落的物质[4],后证实该物质即为脱落酸(abscisicacid,ABA),它是一种含15个碳原子的倍半萜类化合物植物激素。ABA在植物体内的天然形式是2–顺-4–反–(+)ABA,构型见图1。图1植物体内ABA的构型ABA是一种非常重要的植物激素,参与高等植物生长发育的多个重要过程,如胚胎发生、种子发育、贮藏蛋白合成、种子休眠的诱导和维持、种子萌发、侧根发生、叶片脱落、器官衰老、气孔关闭等[5-10]。此外,当植物遭受各种非生物和生物胁迫,如干旱、寒冷、盐胁迫、渗透压胁迫、病原物侵染等,ABA的含量会迅速增加,导致气孔关闭,减少水分蒸腾,激活编码可溶性渗透保护物质等基因降低胁迫伤害,减少胁迫诱导的乙烯、活性氧对植物生长的影响[11-14],因此ABA常被称作胁迫激素。随着胁迫因素的消失,ABA含量又恢复到胁迫前的水平。由此可见,植物体内ABA含量和信号对调节植物逆境反应以及生长发育有着重要的意义。ABA信号转导作用机制的研究一直是植物逆境生物学的重要课题,根据拟南芥基因组的研究,特别启用了已鉴定出的介导ABA信号转导的关键元件,包括蛋白激酶,磷酸酶,转录因子,RNA加工因子,蛋白酶,染色质重组蛋白和介导表观遗传调控的组蛋白去乙酰化酶等[15-17]。然而,ABA信号转导还依然存在许多的问题。2ABA受体的研究1983年Hartung的一个开创性的研究报告为ABA的结合以及其在野苣细胞表面的结合位点的存在提供了初步证据。作者得出质子化的ABA可以通过质膜扩散,而非质子化的ABA则不能,两种形式的ABA都能促进气孔关闭。这些结果表明,通过质膜扩散可能不是ABA激发应答所必需的。后来以质膜研究独立的ABA结合蛋白,为ABA结合蛋白的存在进一步提供了证据[18-19],应该指出的是最近发现一些ABA膜结合蛋白在早期居然可以作为ABA转运蛋白行使功能[20-21]。研究发现,膜感受位点足以引发水稻[22]和拟南芥悬浮细胞[23-24]中ABA应答基因的表达,并改变拟南芥悬浮细胞中阴离子和K+的流通[23]。后来,Yamazaki等人利用生物素-ABA共轭结合荧光标记的抗生素蛋白以及利用荧光显微技术直观的展示了膜表面ABA的结合。这些研究都指出质膜上存在着ABA感受位点。与此同时,一些调查显示细胞质中也存在ABA感受位点,例如,显微注射到鸭跖草保卫细胞的ABA被发现足以引起气孔关闭[26,27],然而另一个研究组则在类似的研究中得出了相反的结论[28]。Levechenko等发现,虽然外施ABA能激活保卫细胞阴离子通道,但将ABA注射进入细胞质激活阴离子通道更快,更加明显,这表明存在一个内在的ABA感应位点[29]。按照这些早期的研究结果,最新的研究已经确定存在两种类型的质膜ABA受体[30-31],叶绿体ABA受体[32],细胞质/细胞核ABA受体[33]。自2006年FCA被报道为ABA受体以来[35],相继报道了ABAR/CHLH、GCR2、GTGl/2和PYR/PYL/RCAR是ABA的受体蛋白,为植物中ABA信号转导通路的阐明奠定了重要基础[32-34]。本文将重点介绍各个受体的研究情况。2.1FCA在ABA处理过的大麦糊粉中发现一个能够结合ABA的蛋白是ABAP1,该蛋白是第一个被鉴定出来的能够结合ABA的抗体蛋白[36]。FCA是其在拟南芥中的同源基因,参与ABA信号接收并调控植物开花时间和根的形成过程,但并不参与种子萌发和气孔关闭等典型的ABA反应[35]。此后Risk等利用3H-ABA与FCA的体外结合实验证明,FCA并不能结合ABA,之前的实验结果不能重复出来[37]。这些证据导致关于FCA是ABA受体的结论被质疑。2.2ABAR,CHLHCHLH是第二个被发现的ABA结合蛋白,最初是在蚕豆的表皮中通过亲和层析被分离出来的[38],CHLH是叶绿体镁离子螯合酶的H亚基。拟南芥中与该蛋白同源的基因被命名为ABAR[39]。ChlH/ABAR可与(+)-ABA特异结合并具有高亲和力,它具有调解ABA应答的重要作用,包括种子萌发,早期幼苗生长发育和气孔运动等[32]。ABAR编码定位于质体的参与催化叶绿素合成的镁离子螯合酶H亚基CHLH(Mg-chelataseHsubunit)[32]。离子螯合酶催化Mg离子进入原卟啉Ⅸ中形成镁离子-原卟啉Ⅸ,镁离子-原卟啉Ⅸ是叶绿素前体。此酶由CHLH、CHLD和CHLI3种亚基组成,亚基CHLH具有结合卟啉的功能,它不但可催化细胞叶绿素的合成,而且在应激条件下能够参与质体/叶绿体与细胞核之间的信号反向传递[39,40]。然而,2009年Muller和Hansson发现大麦中与拟南芥CHLH同源的基因XanF的突变体在种子萌发、幼苗早期生长和气孔运动中都没有表现出相应的ABA相关表型,且XanF的ABA结合活性并没有被检测到,因此他们对至少在大麦中ABAR/CHLH是否为ABA受体提出了质疑[41]。2009年Wu等又提出了ABAR/CHLH作为ABA受体的新证据,ABAR/CHLH可以通过C末端与ABA特异结合,过表达ABAR/CHLH的C末端蛋白的转基因株系在萌发、幼苗生长和气孔运动中对ABA表现出超敏现象,在ABA不敏感突变体cch中表达该C末端蛋白可以恢复cch所有的ABA表型。他们还鉴定了ABAR/CHLH的两个新的点突变体:abar-2和abar-3,两个突变体在种子萌发和幼苗生长中表现出ABA不敏感表型[42]。最近有研究表明WRKY(WRKYGQK-containing)转录因子(WRKY40,WRKY18和WRKY60)[43]可能参与了传递ABAR/CHLH的ABA信号。研究证明:在低浓度的ABA水平,WRKY40通过W-BOX的顺式元件结合,抑制一些转录因子ABI5和DREB2A激活ABA应答[43,44],另一方面,当ABA浓度高时则促进转录因子的表达,反过来他们可以激活ABA应答基因的表达。2.3GCR2G蛋白偶联受体(GPCR)是一类能与G蛋白相互作用而形成复合物的蛋白。根据药理学的结果表明植株中可能存在着G蛋白介导的ABA信号转导路径[45]。研究表明G蛋白偶联受体(GCR1)可能参与ABA信号转导路径,过表达G蛋白偶联受体(GCR1)会使种子的休眠减弱[46],然而通过遗传分析GCR1功能缺失突变体发现GCR1基因并不直接参与ABA激素的感应。gcr1缺失突变体对ABA敏感,数据同时表明GCR1基因具有多重效应能够参与到其他的信号路径[47]。近来发现,在拟南芥基因组中有一种GPCR位于细胞膜上并对ABA具有很高的亲合力,有一个ABA结合位点并具有饱和性,称之为GCR2(G-proteinCoupledReceptor2),GCR2作为ABA受体的鉴定始于对GCR2蛋白生物信息学分析,预测其含有7个跨膜结构域,哺乳动物细胞中也具有这一结构特征[37]。第三个可能的ABA受体被分离出来,这个蛋白可能是G蛋白偶联受体[30]。研究表明,具有G蛋白耦联受体特征的GCR2蛋白能与(+)-ABA特异性结合,调控拟南芥ABA信号应答反应[30]。正常情况下GCR2蛋白与Ga亚基(Gproteinasubunit,GPAl)相互作用形成GCR2一GPAl复合物,ABA与GCR2蛋白的特异性结合诱使G蛋白释放,G蛋白随后分离为Gα和Gβγ二聚体,并分别通过作用于其下游的效应因子调控ABA的信号应答反应[30]。但此后不久,Johnston等的研究结果表明GCR2既不是跨膜蛋白也不是G蛋白偶联受体,而是细菌羊毛硫氨酸合酶在植物中的同源基因[48]。其他研究团队的结果也表明GCR2在ABA介导的种子萌发和幼苗发育中并不发挥作用[49,50]。实验证明,拟南芥GPA1缺失突变体的种子萌发表型和突变体的保卫细胞对ABA浓度不敏感,在ABA处理情况下也不能抑制气孔的关闭。目前有关这个基因是否真正参与到ABA信号通路和这个基因是否是G蛋白偶联受体依然存在着争论[48-50]。2.4GTGl/GTG2最近,提出了一类新的G蛋白偶联受体:GTGs(GPCR-typeGproteins),作为ABA的受体[31],预测GTG蛋白的拓扑结构和G蛋白偶联受体类似。由Ga、Gβ和Gγ三亚基组成的G蛋白协同G蛋白耦联受体及其下游效应因子在响应植物激素信号应答过程中发挥着重要作用[51,52]。Pandey等首先通过生物信息学分析鉴定出GTG1和GTG2两个基因,这两个蛋白具有9次跨膜结构域,还应当指出的是,典型的G蛋白偶联受体则包含7个跨膜结构域。拟南芥GTGs蛋白包含GTP结合结构域以及GTP酶活性结构域,这通常在典型的G蛋白偶联受体中是不存在的。随后,他们根据GTG重组蛋白在卵磷脂中能够立体特异结合(+
本文标题:植物激素脱落酸ABA受体的研究
链接地址:https://www.777doc.com/doc-2301147 .html