您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 概率与统计常见题型(文)
-1-概率与统计常见题型一、随机抽样和用样本估计总体规律方法(1)解答与抽样方法有关的问题的关键是深刻理解各种抽样方法的特点、适用范围和实施步骤,熟练掌握系统抽样中被抽个体号码的确定方法,掌握分层抽样中各层人数的计算方法.(2)与频率分布直方图、茎叶图有关的问题,应正确理解图表中各个量的意义,通过图表掌握信息是解决该类问题的关键.(3)在做茎叶图或读茎叶图时,首先要弄清楚“茎”和“叶”分别代表什么,正确求出数据的众数和中位数;方差越小,数据越稳定.特别提醒:频率分布直方图中的纵坐标为频率组距,而不是频率值.1、交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为().A.101B.808C.1212D.20122、如图是根据部分城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[24.5,25.5),[25.5,26.5].已知样本中平均气温低于22.5℃的城市个数为11,则样本中平均气温不低于25.5℃的城市个数为__________.3、如图是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x为x1,x2,…,xn的平均数)二、变量的相关性和统计案例规律方法解决线性回归问题的关键是:(1)正确理解计算b^,a^的公式并准确的计算,若对数据作适当的预处理,可避免对大数字进行运算;(2)分析两个变量的相关关系时,可根据样本数据作散点图来确定两个变量之间是否具有相关关系,若具有线性相关关系,则可通过线性回归方程估计和预测变量的值.4、某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价x/元8[来源:Z*xx*k.Com]8.28.48.68.89销量y/件908483807568(1)求回归直线方程y^=b^x+a^,其中b^=-20,a^=y-b^x;(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)5、某地最近十年粮食需求量逐年上升,下表是部分统计数据:-2-年份20022004200620082010需求量(万吨)236246257276286(1)利用所给数据求年需求量与年份之间的回归直线方程y^=b^x+a^;(2)利用(1)中所求出的直线方程预测该地2013年的粮食需求量.三、古典概型与几何概型规律方法(1)解决古典概型问题的关键是①正确求出基本事件总数和所求事件包含的基本事件数.②P(A)=mn既是古典概型的定义,又是求概率的计算公式,应熟练掌握.(2)解决几何概型的关键是寻找试验的全部结果构成的区域和事件发生时构成的区域,有时需要设出变量,在坐标系中表示所需要的区域.(3)若事件正面情况比较多、反面情况较少,则一般利用对立事件进行计算.对于“至少”、“至多”等事件的概率计算,往往用这种方法求解.6、如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部分的概率是().A.12-1πB.1πC.1-2πD.2π第6题第8题7、有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为().A.13B.12C.23D.348、如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自△ABE内部的概率等于().A.14B.13C.12D.23四、概率统计综合问题规律方法1.抽样方法和概率问题的综合一般是从分层抽样开始,设置分层抽样中的一些计算问题,然后就分层抽样中各个层设置一个古典概型计算问题.虽然此类题目所考查的知识横跨两部分,但是分解开来后,并不难解决.由于此类题目多与实际问题联系紧密,题干较长,信息量大,且会有图表,因此要认真审题并要掌握解答题目所需的知识.要做到:(1)分层抽样中的公式运用要准确.①抽样比=样本容量个体总量=各层样本容量各层个体总量.②层1的数量∶层2的数量∶层3的数量=样本1的容量∶样本2的容量∶样本3的容量.(2)在计算古典概型概率时,基本事件的总数要计算准确.2.频率分布与概率的综合主要有两种形式:(1)题目中给出了样本的频率分布表,它反映了样本在各个组内的频数和频率,要求根据频率分布表画出频率分布直方图,并根据样本在各组的频数,设置分层抽样和概率计算等.(2)利用频率与概率的关系,频率近似于概率,给出某类个体中的一个个体被抽中的概率,从而求出样本-3-容量及其他类个体的数量.在解决此类问题时,可将题目中所给概率作为此类个体被抽中的频率,从而求解.9、近年来,某市为了促进生活垃圾的分类处理,将生活垃圾分为厨余垃圾、可回收物和其他垃圾三类,并分别设置了相应的垃圾箱.为调查居民生活垃圾分类投放情况,现随机抽取了该市三类垃圾箱中总计1000吨生活垃圾,数据统计如下(单位:吨):“厨余垃圾”箱“可回收物”箱“其他垃圾”箱厨余垃圾400100100可回收物3024030[来源:学_科_网Z_X_X_K]其他垃圾202060(1)试估计厨余垃圾投放正确的概率;(2)试估计生活垃圾投放错误的概率;(3)假设厨余垃圾在“厨余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分别为a,b,c,其中a>0,a+b+c=600.当数据a,b,c的方差s2最大时,写出a,b,c的值(结论不要求证明),并求此时s2的值.(注:s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2],其中x为数据x1,x2,…,xn的平均数)10、某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增加5.已知近20年X的值为:140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表近20年六月份降雨量频率分布表降雨量70110140160200220频率120420220(2)假定今年六月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.五、数形结合思想——解决有关统计问题(1)通过频率分布直方图和频数条形图研究数据分布的总体趋势;(2)根据样本数据散点图确定两个变量是否存在相关关系.解答时注意的问题:(1)频率分布直方图中的纵坐标为频率组距,而不是频率值;(2)注意频率分布直方图与频数条形图的纵坐标的区别.11、为了解学生身高情况,某校以10%的比例对全校700名学生按性别进行分层抽样调查,测得身高情况的统计图如下:(1)估计该校男生的人数;(2)估计该校学生身高在170~185cm之间的概率;(3)从样本中身高在180~190cm之间的男生中任选2人,求至少有1人身高在185~190cm之间的概率.-4-概率与统计练习:1.在某次测量中得到的A样本数据如下:82,84,84,86,86,86,88,88,88,88.若B样本数据恰好是A样本数据每个都加2后所得数据,则A,B两样本的下列数字特征对应相同的是().A.众数B.平均数C.中位数D.标准差2.对某商店一个月内每天的顾客人数进行了统计,得到样本的茎叶图(如图所示),则该样本的中位数、众数、极差分别是().A.46,45,56B.46,45,53C.47,45,56D.45,47,533.在长为12cm的线段AB上任取一点C.现作一矩形,邻边长分别等于线段AC,CB的长,则该矩形面积大于20cm2的概率为().A.16B.13C.23D.454.袋中有五张卡片,其中红色卡片三张,标号分别为1,2,3;蓝色卡片两张,标号分别为1,2.(1)从以上五张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率;(2)向袋中再放入一张标号为0的绿色卡片,从这六张卡片中任取两张,求这两张卡片颜色不同且标号之和小于4的概率.5.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系.根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为y^=0.85x-85.71,则下列结论中不正确的是().A.y与x具有正的线性相关关系B.回归直线过样本点的中心(x,y)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg6.要完成下列两项调查:①从某社区125户高收入家庭、280户中等收入家庭、95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学的15名艺术特长生中选出3人调查学习负担情况.宜采用的抽样方法依次为().A.①简单随机抽样法,②系统抽样法B.①分层抽样法,②简单随机抽样法C.①系统抽样法,②分层抽样法D.①②都用分层抽样法7.容量为20的样本数据,分组后的频数如下表:则样本数据落在区间[10,40)的频率为().分组[10,20)[20,30)[30,40)[40,50)[50,60)[60,70)频数234542A.0.35B.0.45C.0.55D.0.658.设不等式组0≤x≤2,0≤y≤2表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是().A.π4B.π-22C.π6D.4-π4-5-9.为了分析某同学在班级中的数学学习情况,统计了该同学在6次月考中的数学名次,用茎叶图表示如图所示,则该组数据的中位数为__________.10.若某产品的直径长与标准值的差的绝对值不超过1mm时,则视为合格品,否则视为不合格品,在近期一次产品抽样检查中,从某厂生产的此种产品中,随机抽取5000件进行检测,结果发现有50件不合格品,计算这50件不合格品的直径长与标准值的差(单位:mm),将所得数据分组,得到如下频率分布表:分组频数频率[-3,-2)0.10[-2,-1)8(1,2]0.50(2,3]10(3,4]合计501.00(1)将上面表格补充完整;(2)估计该厂生产的此种产品中,不合格品的直径长与标准值的差落在区间(1,3]内的概率;(3)现对该厂这种产品的某个批次进行检查,结果发现有20件不合格品,据此估算这批产品中的合格品的件数.11.甲、乙两位同学参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取5次,绘制成茎叶图如图:[来源:Z_xx_k.Com](1)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;(2)若在茎叶图中的甲、乙预赛成绩中各任取1次成绩分别记为a和b,求满足a>b的概率.1、解析:四个社区抽取的总人数为12+21+25+43=101,由分层抽样可知,9612=N101,解得N=808.故选B.2、9解析:由于组距为1,则样本中平均气温低于22.5℃的城市频率为0.10+0.12=0.22.平均气温低于22.5℃的城市个数为11,所以样本容量为110.22=50.而平均气温高于25.5℃的城市频率为0.18,所以,样本中平均气温不低于25.5℃的城市个数为50×0.18=9.3、6.8解析:∵x=8+9+10+13+155=11,∴s2=8-112+
本文标题:概率与统计常见题型(文)
链接地址:https://www.777doc.com/doc-2302775 .html