您好,欢迎访问三七文档
左健中国科学技术大学理化科学实验中心显微共焦拉曼光谱及应用特别是显微拉曼光谱可进行空间分辨、原位无损的光谱分析。拉曼光谱是以光子为探针,它对样品的结构和成分极为敏感并有很强的特征性,就像人的指纹一样。435.8nm(Hg-line)SpectrumtakenbyRamanin1929;Resolutionca.10cm-1SampleVolume:ca.1literExposuretime:ca.40hoursSpectrumtakenwithamodernRamanset-up;Resolutionca.0.5cm-1SampleVolume:ca.1mlAccumulationtime:ca.1sRamanSpectrumofCCl4Stokesanti-StokesIsotopic(35,37Cl)splittingofn1-vibration461.5-CCl435455.1-CCl335Cl37453.4-CCl235Cl237从拉曼光谱获取的信息characteristicRamanpeakCompositionandstructureofmaterialchangesinfrequencyofRamanpeakstress/strainstateCrystalsizepolarizationofRamanpeakcrystal(molecule)symmetryandorientationwidthofRamanpeakqualityofcrystal(crystalsize)不同的物质,其拉曼谱是不同的,就象人的指纹一样,因此拉曼光谱可用于物相的分析与表征。水拉曼特征峰随NaCl浓度变化趋势图,曲线A,B,C,D,E,F的盐度分别为:0.05,0.20,0.50,1.00,2.00,5.00mol/LW/Si多层膜年代估计Bertoluzza等对28个年代在1750~1940年之间的工艺玻璃杯进行了拉曼光谱分析,仅从拉曼峰的位置和强度并不能反映出与样品的年代有什么关系,但发现1080cm-1的拉曼峰的强度与位于高波数的荧光峰强度的比值与年代有关。给出一个经验公式:y=a+bxy=log(I1080/I荧光)x=年代a=-25.384b=0.013Ramanspectroscopy:highcharacteristicgoodspatialresolution(microRaman)minimalsamplepreparationallsolventscanbeusedbut:biologicalsamplesoftenshowhighfluorescencebiologicalmoleculesappearoftenatlowconcentrationlevelWhySERSspectroscopy?SERSquenchesfluorescenceessentialoil10mmRamansilvercolloidsM.xpiperita514.5nm200015001000500Wavenumber/cm-1RamanIntensitySERSimprovesthedetectionlimit:Adenine10-8M10-7M10-6M10-5M10-3M10-2M10-1M15001000500RamanIntensityRamanWavenumber/cm-115001000500Wavenumber/cm-1RamanIntensitySERSNHNNNNH2TypicalSERSmediaResonancewithelectronicstatesw0wStokeswRrififwirw0=wirVirtualstateContinuumResonanceRamanScatteringinIodineExcitedwithl0=488nmWavenumber/cm-1l0=488nmTS-1的紫外共振拉曼光谱lex=244nmIntegrationoftheMicroscopeandtheSpectrometer:MicroscopeMicroscope+Spectrometerdispersingelement:gratingmonochromatorBaldwin,Batchelder,Webster:“RamanMicroscopy:ConfocalandScanningNear-Field“,in:HandbookofRamanSpectroscopyMakingtheMicroscopeConfocal:IntroducinganApertureConfocalRamanMicrospectroscopyBeamwaistofdiameter(Gaussianintensityprofile)Focalvolume(cylindrical)FocallengthofthelenseEffectivediameteratthelenseBaldwin,Batchelder,Webster:“RamanMicroscopy:ConfocalandScanningNear-Field“,in:HandbookofRamanSpectroscopyConfocalRamanMicrospectroscopyPrincipleofConfocalMicroscopyandDepthDiscrimination:Barbillat,Dhamelincourt,Delhaye,DaSilva,J.RamanSpectrosc.1994,25,3-11.MakingtheMicroscopeConfocal:IntroducinganApertureConfocalRamanMicrospectroscopyBeamwaistofdiameter(Gaussianintensityprofile)Focalvolume(cylindrical)FocallengthofthelenseEffectivediameteratthelenseBaldwin,Batchelder,Webster:“RamanMicroscopy:ConfocalandScanningNear-Field“,in:HandbookofRamanSpectroscopyConfocalRamanMicrospectroscopyMeasurementofDepthResolutiononaPolystyrene(聚苯乙烯)Bead:IllustrationofConfocalDepthDiscrimination.SolidInclusionofChalcopyrite(黄铜矿)withinaRubyHost.Barbillat,Dhamelincourt,Delhaye,DaSilva,J.RamanSpectrosc.1994,25,3-11.选择激发波长——穿透深度kDpl41Dp为激发波长在;Wavelength(nm)800750700650600550500450400350300250k543210SiGe325nm488nm633nm785nm选择激发波长——穿透深度kDpl41Dp为激发波长在样品中的穿透深度;k为消光系数.Wavelength(nm)800750700650600550500450400350300250k543210SiGe325nm488nm633nm785nm利用不同波长穿透深度不同,可以分析样品不同层的信息变换激发波长-分析样品不同深度的信息ZrO2的晶相结构Temperatureforphasetransformationm-ZrO2t-ZrO2950-1200oCt-ZrO2c-ZrO22370oCMeltingpoint2500-2600oCmonoclinictetragonalcubicm-ZrO2andt-ZrO2的特征拉曼光谱100200300400500600700800900474613634376339305220180640462149312270IntensityRamanShift/cm-1m-ZrO2(cm-1)176,187,220,305,340,376,474,510,536,558,613,634t-ZrO2(cm-1)149,270,313,462,600,640monoclinictetragonal对于单斜相(m),谱峰474cm-1强于634cm–1,而四方相(t)恰好相反。单斜相的拉曼谱图中,在472和634cm-1两个谱峰之间有些弱的谱峰存在,而这些谱峰在四方相的拉曼谱图中是不存在的。100200300400500600700800900mmmmmmmtttm700oC500oC400oCIntensity/A.U.Ramanshift/cm-1400oC:混合晶相500oC:m-ZrO2700oC焙烧之后仍能观察到四方晶相ZrO2.ZrO2样品不同温度焙烧后的紫外拉曼光谱图和XRD图谱100200300400500600700800900mmmmmmmm700oC500oC400oCtttRamanshift/cm-1IntensityZrO2样品不同温度焙烧后的可见拉曼光谱图和XRD图谱可见拉曼光谱的结果和XRD的结果非常相似主要为四方晶相提出的ZrO2相变机理UVLaserX-rayUVRamanScatteringXRDVisibleLaserVisibleRamanScatteringAmorphousZr(OH)4TetragonalZrO2MonoclinicZrO2紫外拉曼光谱与XRD,可见拉曼光谱结果的不同表明氧化锆四方相到单斜相的相变首先是从表面开始,接着逐步发展到体相。S.Shukla,etal.NanoLetters2002,2,989.TEMevidenceforthephasetransformationofZrO2TetragonalMonoclinicCanLi,etal.J.Phys.Chem.B2001,105,8107.在拉曼光谱测试中,往往会遇到荧光的干扰,由于拉曼散射光极弱,所以一旦样品或杂质产生荧光,拉曼光谱就会被荧光所淹没。发光(荧光)的抑制和消除通常荧光来自样品中的杂质,但有的样品本身也可发生荧光,常用抑制或消除萤光的方法有以下几种:有时在样品中加入少量荧光淬灭剂,如硝基苯,KBr,AgI等,可以有效地淬灭荧光干扰。(1)纯化样品(2)强激光长时间照射样品虽然无法解释为什么用激光长时间照射样品能够有效的消除荧光干扰,但在很多情况下用这种方法确实能达到消除荧光干扰的效果。(3)加荧光淬灭剂(4)利用脉冲激光光源当激光照射到样品时,产生荧光和拉曼散射光的时间过程不同,若用一个激光脉冲照射样品,将在10-11~10-13S内产生拉曼散射光,而荧光则是在10-7∽10-9S后才出现(5)改变激发光的波长以避开荧光干扰在测量拉曼光谱时,对于不同的激发光拉曼谱带的相对位移是不变的,荧光则不然,对于不同的激发光,荧光的相对位移是不同的。所以选择适当的激发光,可避开荧光的干扰。在实际工作中常用这一方法识别荧光峰。(6)其他方法非线性技术:coherentanti-StokesRamanspectroscopy(CARS)Forlow-wavenumbermodeslookatanti-StokessidesincefluorescencestartsinmostcasesonlyintheStokesregionFluorescencequenchingbymeansofsurfaceenhancedRamanscattering(SERS)
本文标题:显微共焦拉曼光谱.
链接地址:https://www.777doc.com/doc-2312677 .html