您好,欢迎访问三七文档
1、智能控制是在什么背景下产生的?试述智能控制的主要特点。(1)智能控制产生的背景科学技术的产生和发展主要由生产发展需求和知识水平所决定,控制科学也不例外。二十世纪以来,控制科学与技术得到了迅速发展,由研究单输入单输出被控对象的经典控制理论发展形成了研究多输入多输出被控对象的现代控制理论。经典控制理论主要是采用频域法对控制系统进行描述、分析和设计,现代控制主要采用时域的状态空间方法。二十世纪六十年代,由于空间技术、海洋工程和机器人技术发展的需要[2],控制领域面临着被控对象的高度复杂性和不确定性,以及人们对控制性能要求越来越高的挑战。被控对象的高度复杂性和不确定性主要表现为对象的高维、高度非线性和不确定性[3],高噪声干扰、强耦合,系统工作点动态突变性,以及分散的传感元件与执行元件,分层和分散的决策机构,复杂的信息模式和庞大的数据量。面对复杂的对象,复杂的任务和复杂的环境,用传统控制(经典控制和现代控制)的理论和方法去解决是不可能的。原因[4]:(1)传统的控制理论都是建立在以微分和积分为工具的精确数学模型之上的,而复杂系统的复杂性和不确定性都难以用精确的数学模型描述,否则就会使原问题丢失很多信息,例如:骑自行车沿一条曲线行走这套看似简单的动作,如果我们要把这一系列的动作和环境建立出精确的数学模型,然后再一步一步按模型去操作,可以想象其过程是多复杂而又难以实现;(2)传统的控制理论虽然也有办法对付控制对象的不确定性和复杂性,如自适应控制和Robust控制可以克服系统中所包含的不确定性,保证控制系统的控制质量不变,达到优化控制的目的。但他们仅适用于系统参数在一定范围内缓慢变化的情况,其优化控制的范围是很有限的。(3)传统的控制系统要求输入的信息比较单一,而现代的控制系统要面对复杂系统以各种形式(视觉、听觉、触觉和直接操作的方式)将周围环境信息作为输入的状况,并将各种信息进行融合、分析和推理,再随环境与条件的变化,相应地采取对策或行动。传统的控制策略单一,不能适合高层决策问题,所以智能控制应运而生。(2)智能控制具有下列特点:(1)同时具有以知识表示的非数学广义模型和以数学模型(含计算智能模型与算法)表示的混合控制过程,也往往是那些含有复杂性、不完全性、模糊性或不确定性以及不存在已知算法的过程,并以知识进行推理,以启发式策略和智能算法来引导求解过程。(2)智能控制的核心在高层控制,即组织级。高层控制的任务在于对实际环境或过程进行组织,即决策和规划,实现广义问题求解。(3)智能控制是一门边缘交叉学科。实际上,智能控制涉及更多的相关学科。智能控制的发展需要各相关学科的配合与支援,同时也要求智能控制工程师是个知识工程师。(4)智能控制是一个新兴的研究领域。无论在理论上或实践上它都还很不成熟、很不完善,需要进一步探索与开发。2、为什么说智能控制系统是自动控制发展的必然?你对智能控制的发展方向有何看法?(1)智能控制是自动控制理论发展的必然趋势。人工智能为智能控制的产生提高了机遇。自动控制理论是人类在征服自然,改造自然的斗争中形成和发展的.控制理论从形成发展至今,已经经历多年的历程,分为三个阶段.第一阶段是以上世纪40年代兴起的调节原理为标志,称为经典控制理论阶段;第二阶段以60年代兴起的状态空间法为标志,称为现代控制理论阶段;第三阶段则是80年代兴起的智能控制理论阶段.(2)你对智能控制的发展方向有何看法?3、BP人工神经网络有哪些学习算法?试详述其中一种学习算法。BP人工神经网络有哪些学习算法?1、标准BP算法2、动量BP算法3、学习率可变的BP算法4、二次收敛的Newton法、拟Newton法5、二阶BP算法6、共振梯度法7、最小二乘法8、高阶快速学习算法试详述其中一种学习算法。(动量BP算法)4、从目前的研究成果来看,人工神经网络控制有很好的发展前景,试结合目前的你了解的人工神经网络研究成果加以讨论?随着科学技术的发展,现代化机械设备的工作强度不断增大,生产效率、自动化程度也越来越高,设备更加复杂的同时,各部分的关联也愈加紧密,某处微小故障可能会导致整台设备甚至与设备有关的环境遭受灾难性的毁坏。近年来,设备预防维修制度正逐步向设备预知维修制度过渡,与设备预防维修制度相比,预知维修制度以振动监测和故障诊断技术为基础,可以做到及早发现故障并消除故障隐患,防止故障的进一步发展,能预防和减少恶性事故的发生,保障人身和设备安全;可以节省设备维修时间,增加设备运行时间,节约维修资金,进而提高企业的生产率与经济效益。传统的诊断方法和诊断理论对单过程、单故障和渐发性故障的简单系统可以发挥较好的作用,但对于多过程、多故障和突发性故障以及复杂庞大、高度自动化的大型设备和系统就具有很大的局限性。将人工智能的理论和方法应用于机械故障诊断,发展智能化的机械故障诊断技术,是机械故障诊断的一个新途径。其中,人工神经网络具有容错、联想、推测、记忆、自适应、自学习和处理复杂多模式的功能,在对非线性时间序列的预测中有一定通用性。振动是机械设备在运行过程中(正常运行与异常运行)所表现出来的一种信息,通过对机器主要部位的振动值如位移、速度、加速度、转速及相位值等进行测定,与标准值进行比较,就可宏观地评定机器的运行状况。然后对测得的振动量进行特征分析,确定故障的性质,最后进一步进行分析就可以确定故障的原因及部位[1]。利用人工神经网络对机械振动信号进行预测,将预测结果作为检验设备是否发生故障的依据,也是对设备进行机械故障诊断的重要依据。目前,人工神经网络已逐步应用到机械故障诊断领域,并成为机械故障诊断领域的一个研究热点。
本文标题:智能控制参考
链接地址:https://www.777doc.com/doc-2315569 .html