您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 浙江省金华市丽水市2013年中考数学试卷(word解析版)
2015版·综合项目部专用资源-1-浙江省金华、丽水市2013年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.(3分)(2013•丽水)在数0,2,﹣3,﹣1.2中,属于负整数的是()A.0B.2C.﹣3D.﹣1.2考点:有理数分析:先在这些数0,2,﹣3,﹣1.2中,找出属于负数的数,然后在这些负数的数中再找出属于负整数的数即可.解答:解:在这些数0,2,﹣3,﹣1.2中,属于负数的有﹣3,﹣1.2,则属于负整数的是﹣3;故选C.点评:此题考查了有理数,根据实数的相关概念及其分类方法进行解答,然后判断出属于负整数的数即可.2.(3分)(2013•丽水)化简﹣2a+3a的结果是()A.﹣aB.aC.5aD.﹣5a考点:合并同类项分析:合并同类项,系数相加字母和字母的指数不变.解答:解:﹣2a+3a=(﹣2+3)a=a.故选B.点评:本题主要考查合并同类项得法则.即系数相加作为系数,字母和字母的指数不变.3.(3分)(2013•丽水)用3个相同的立方块搭成的几何体如图所示,则它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:从正面看到的图叫做主视图,根据图中立方体摆放的位置判定则可.解答:解:由图可知:右上角有1个小正方形,下面有2个小正方形,故选:A.点评:此题主要考查了三种视图中的主视图,比较简单,注意主视图是从物体的正面看得到的视图.4.(3分)(2013•丽水)若关于x的不等式组的解表示在数轴上如图所示,则这个不等式组的解是()2015版·综合项目部专用资源-2-A.x≤2B.x>1C.1≤x<2D.1<x≤2考点:在数轴上表示不等式的解集.专题:计算题.分析:根据数轴表示出解集即可.解答:解:根据题意得:不等式组的解集为1<x≤2.故选D点评:此题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.5.(3分)(2013•丽水)如图,AB∥CD,AD和BC相交于点O,∠A=20°,∠COD=100°,则∠C的度数是()A.80°B.70°C.60°D.50°考点:平行线的性质;三角形内角和定理分析:根据平行线性质求出∠D,根据三角形的内角和定理得出∠C=180°﹣∠D﹣∠COD,代入求出即可.解答:解:∵AB∥CD,∴∠D=∠A=20°,∵∠COD=100°,∴∠C=180°﹣∠D﹣∠COD=60°,故选C.点评:本题考查了三角形的内角和定理和平行线的性质的应用,关键是求出∠D的度数和得出∠C=180°﹣∠D﹣∠COD.6.(3分)(2013•丽水)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是()组别A型B型AB型O型频率0.40.350.10.15A.16人B.14人C.4人D.6人考点:频数与频率.分析:根据频数和频率的定义求解即可.解答:解:本班A型血的人数为:40×0.4=16.故选A.2015版·综合项目部专用资源-3-点评:本题考查了频数和频率的知识,属于基础题,掌握频数和频率的概念是解答本题的关键.7.(3分)(2013•丽水)一元二次方程(x+6)2=16可转化为两个一元一次方程,其中一个一元一次方程是x+6=4,则另一个一元一次方程是()A.x﹣6=﹣4B.x﹣6=4C.x+6=4D.x+6=﹣4考点:解一元二次方程-直接开平方法.分析:方程两边直接开平方可达到降次的目的,进而可直接得到答案.解答:解:(x+6)2=16,两边直接开平方得:x+6=±4,则:x+6=4,x+6=﹣4,故选:D.点评:本题主要考查了直接开平方法解一元二次方程,关键是将方程右侧看做一个非负已知数,根据法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解”来求解.8.(3分)(2013•丽水)一条排水管的截面如图所示,已知排水管的半径OB=10,水面宽AB=16,则截面圆心O到水面的距离OC是()A.4B.5C.6D.8考点:垂径定理;勾股定理分析:根据垂径定理求出BC,根据勾股定理求出OC即可.解答:解:∵OC⊥AB,OC过O,∴BC=AC=AB=×16=8,在Rt△OCB中,由勾股定理得:OC===6,故选C.点评:本题考查了勾股定理和垂径定理的应用,关键是求出BC的长.9.(3分)(2013•丽水)若二次函数y=ax2的图象经过点P(﹣2,4),则该图象必经过点()A.(2,4)B.(﹣2,﹣4)C.(﹣4,2)D.(4,﹣2)考点:二次函数图象上点的坐标特征.分析:先确定出二次函数图象的对称轴为y轴,再根据二次函数的对称性解答.解答:解:∵二次函数y=ax2的对称轴为y轴,∴若图象经过点P(﹣2,4),则该图象必经过点(2,4).2015版·综合项目部专用资源-4-故选A.点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数图象的对称性,确定出函数图象的对称轴为y轴是解题的关键.10.(3分)(2013•丽水)如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x(秒)的函数图象如图2所示,当点P运动5秒时,PD的长是()A.1.5cmB.1.2cmC.1.8cmD.2cm考点:动点问题的函数图象.分析:根据图2可判断AC=3,BC=4,则可确定t=5时BP的值,利用sin∠B的值,可求出PD.解答:解:由图2可得,AC=3,BC=4,当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC﹣AC﹣CP=2,∵sin∠B==,∴PD=BPsin∠B=2×==1.2cm.故选B.点评:本题考查了动点问题的函数图象,解答本题的关键是根据图2得到AV、BC的长度,此题难度一般.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)(2013•丽水)分解因式:x2﹣2x=x(x﹣2).考点:因式分解-提公因式法分析:提取公因式x,整理即可.解答:解:x2﹣2x=x(x﹣2).点评:本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.2015版·综合项目部专用资源-5-12.(4分)(2013•丽水)分式方程﹣2=0的解是x=.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:1﹣2x=0,解得:x=,经检验x=是方程的解.故答案为:x=点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.13.(4分)(2013•丽水)合作小组的4位同学坐在课桌旁讨论问题,学生A的座位如图所示,学生B,C,D随机坐到其他三个座位上,则学生B坐在2号座位的概率是.考点:列表法与树状图法.分析:根据题意画出树状图,找出所有可能的情况数,找出学生B坐在2号座位的情况数,即可求出所求的概率.解答:解:根据题意得:所有可能的结果有6种,其中学生B坐在2号座位的情况有2种,则P==.故答案为:点评:此题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.2015版·综合项目部专用资源-6-14.(4分)(2013•丽水)如图,在Rt△ABC中,∠A=Rt∠,∠ABC的平分线BD交AC于点D,AD=3,BC=10,则△BDC的面积是15.考点:角平分线的性质.分析:过D作DE⊥BC于E,根据角平分线性质求出DE=3,根据三角形的面积求出即可.解答:解:过D作DE⊥BC于E,∵∠A=90°,∴DA⊥AB,∵BD平分∠ABC,∴AD=DE=3,∴△BDC的面积是×DE×BC=×10×3=15,故答案为:15.点评:本题考查了角平分线性质和三角形的面积的应用,注意:角平分线上的点到角两边的距离相等.15.(4分)(2013•丽水)如图,四边形ABCD与四边形AEFG都是菱形,其中点C在AF上,点E,G分别在BC,CD上,若∠BAD=135°,∠EAG=75°,则=.考点:菱形的性质;含30度角的直角三角形;等腰直角三角形;旋转的性质.分析:根据菱形的性质可得出∠BAE=30°,∠B=45°,过点E作EM⊥AB于点M,设EM=x,则可得出AB、AE的长度,继而可得出的值.解答:解:∵∠BAD=135°,∠EAG=75°,四边形ABCD与四边形AEFG都是菱形,∴∠B=180°﹣∠BAD=45°,∠BAE=∠BAC﹣∠EAC=30°,过点E作EM⊥AB于点M,设EM=x,在Rt△AEM中,AE=2EM=2x,AM=x,2015版·综合项目部专用资源-7-在Rt△BEM中,BM=x,则==.故答案为:.点评:本题考查了菱形的性质及解直角三角形的知识,属于基础题,关键是掌握菱形的对角线平分一组对角.16.(4分)(2013•丽水)如图,点P是反比例函数y=(k<0)图象上的点,PA垂直x轴于点A(﹣1,0),点C的坐标为(1,0),PC交y轴于点B,连结AB,已知AB=.(1)k的值是﹣4;(2)若M(a,b)是该反比例函数图象上的点,且满足∠MBA<∠ABC,则a的取值范围是0<a<2或<a<.考点:反比例函数综合题.分析:(1)设P(﹣1,t).根据题意知,A(﹣1,0),B(0,2),C(1,0),由此易求直线BC的解析式y=﹣2x+2.把点P的坐标代入直线BC的解析式可以求得点P的坐标,由反比例函数图象上点的坐标特征即可求得k的值;(2)如图,延长线段BC交抛物线于点M,由图可知,当x<a时,∠MBA<∠ABC;过点C作直线AB的对称点C′,连接BC′并延长BC′交抛物线于点M′,当x<a时,∠MBA<∠ABC.解答:解:(1)如图,PA垂直x轴于点A(﹣1,0),∴OA=1,可设P(﹣1,t).又∵AB=,∴OB===2,∴B(0,2).2015版·综合项目部专用资源-8-又∵点C的坐标为(1,0),∴直线BC的解析式是:y=﹣2x+2.∵点P在直线BC上,∴t=2+2=4∴点P的坐标是(﹣1,4),∴k=﹣4.故填:﹣4;(2)①如图1,延长线段BC交双曲线于点M.由(1)知,直线BC的解析式是y=﹣2x+2,反比例函数的解析式是y=﹣.则,解得,或(不合题意,舍去).根据图示知,当0<a<2时,∠MBA<∠ABC;②如图,过点C作直线AB的对称点C′,连接BC′并延长BC′交抛物线于点M′.∵A(﹣1,0),B(0,2),∴直线AB的解析式为:y=2x+2.∵C(1,0),∴C′(﹣,),则易求直线BC′的解析式为:y=x+2,∴,解得:x=或x=,则根据图示知,当<a<时,∠MBA<∠ABC.综合①②知,当0<a<2或<a<时,∠MBA<∠ABC.故答案是:0<a<2或<a<.2015版·综合项目部专用资源-9-点评:本题综合考查了待定系数法求一次函数的解析式,反比例函数图象上点的坐标特征以及分式方程组的解法.解答(2)题时,一定要分类讨论,以防漏解.另外,解题的过程中,利用了“数形结合”的数学思想.三、解答题(本题有8小题,第17-19题每题6分,第20、21题每题8分,第22、23题每题10,第24题12分,共66分,各小题必须写出解答过程)17.(6分)(2013•丽水)计算:﹣|﹣|+(﹣)0.考点:实数的运算;零指数幂.分析:本题涉及二次根式化简、绝对值、零指数幂三个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:﹣|﹣|+(﹣)0=2﹣+1=+1.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握二次根式化简、绝对值、零指数幂等考点的运算.18.(6分)(2013•丽
本文标题:浙江省金华市丽水市2013年中考数学试卷(word解析版)
链接地址:https://www.777doc.com/doc-2324415 .html