您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 江苏省徐州市高二上期末数学试卷理科
1/192016-2017学年江苏省徐州市高二(上)期末数学试卷(理科)一、填空题:本大题共14小题,每小题5分,共计70分.1.命题p“∀x∈R,sinx≤1”的否定是.2.准线方程x=﹣1的抛物线的标准方程为.3.底面半径为1高为3的圆锥的体积为.4.双曲线的一条渐近线方程为y=x,则实数m的值为.5.若直线l1:x+4y﹣1=0与l2:kx+y+2=0互相垂直,则k的值为.6.函数f(x)=x3﹣3x的单调减区间为.7.在正方体ABCD﹣A1B1C1D1中,与AB异面且垂直的棱共有条.8.已知函数f(x)=cosx+sinx,则的值为.9.“a=b”是“a2=b2”成立的条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)10.若圆x2+y2=4与圆(x﹣t)2+y2=1外切,则实数t的值为.11.如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于.12.椭圆(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是.13.已知A(3,1),B(﹣4,0),P是椭圆上的一点,则PA+PB的最大值为.2/1914.已知函数f(x)=lnx,g(x)=﹣2x,当x>2时k(x﹣2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为.二、解答题:本大题共6小题,共计90分.15.在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分别为PB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:DE⊥AD.16.已知圆C的内接矩形的一条对角线上的两个顶点坐标分别为P(1,﹣2),Q(3,4).(1)求圆C的方程;(2)若直线y=2x+b被圆C截得的弦长为,求b的值.17.在直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=AC=2,A1A=4,点D是BC的中点;(I)求异面直线A1B,AC1所成角的余弦值;(II)求直线AB1与平面C1AD所成角的正弦值.3/1918.某制瓶厂要制造一批轴截面如图所示的瓶子,瓶子是按照统一规格设计的,瓶体上部为半球体,下部为圆柱体,并保持圆柱体的容积为3π.设圆柱体的底面半径为x,圆柱体的高为h,瓶体的表面积为S.(1)写出S关于x的函数关系式,并写出定义域;(2)如何设计瓶子的尺寸(不考虑瓶壁的厚度),可以使表面积S最小,并求出最小值.19.已知二次函数h(x)=ax2+bx+c(c<4),其导函数y=h'(x)的图象如图所示,函数f(x)=8lnx+h(x).(1)求a,b的值;(2)若函数f(x)在区间(m,m+)上是单调增函数,求实数m的取值范围;(3)若对任意k∈[﹣1,1],x∈(0,8],不等式(k+1)x≥f(x)恒成立,求实数c的取值范围.20.把半椭圆=1(x≥0)与圆弧(x﹣c)2+y2=a2(x<0)合成的曲线称作“曲圆”,其中F(c,0)为半椭圆的右焦点.如图,A1,A2,B1,B2分别是“曲圆”与x轴、y轴的交点,已知∠B1FB2=,扇形FB1A1B2的面4/19积为.(1)求a,c的值;(2)过点F且倾斜角为θ的直线交“曲圆”于P,Q两点,试将△A1PQ的周长L表示为θ的函数;(3)在(2)的条件下,当△A1PQ的周长L取得最大值时,试探究△A1PQ的面积是否为定值?若是,请求出该定值;若不是,请求出面积的取值范围.5/192016-2017学年江苏省徐州市高二(上)期末数学试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.1.命题p“∀x∈R,sinx≤1”的否定是∃x∈R,sinx>1.【考点】命题的否定.【分析】直接把语句进行否定即可,注意否定时∀对应∃,≤对应>.【解答】解:根据题意我们直接对语句进行否定命题p“∀x∈R,sinx≤1”的否定是:∃x∈R,sinx>1.故答案为:∃x∈R,sinx>1.2.准线方程x=﹣1的抛物线的标准方程为y2=4x.【考点】抛物线的标准方程.【分析】直接由抛物线的准线方程设出抛物线方程,再由准线方程求得p,则抛物线标准方程可求.【解答】解:∵抛物线的准线方程为x=﹣1,∴可设抛物线方程为y2=2px(p>0),由准线方程x=﹣,得p=2.∴抛物线的标准方程为y2=4x.故答案为:y2=4x.3.底面半径为1高为3的圆锥的体积为π.【考点】旋转体(圆柱、圆锥、圆台).【分析】利用圆锥的体积公式,能求出结果.【解答】解:底面半径为1高为3的圆锥的体积为:V==π.6/19故答案为:π.4.双曲线的一条渐近线方程为y=x,则实数m的值为6.【考点】双曲线的简单性质.【分析】根据题意,由双曲线的标准方程可得该双曲线的焦点在x轴上,且a=,b=,可得其渐近线方程为y=±x,进而结合题意可得=1,解可得m的值,即可得答案.【解答】解:根据题意,双曲线的标准方程为:,则其焦点在x轴上,且a=,b=,故其渐近线方程为y=±x,又由该双曲线的一条渐近线方程为y=x,则有=1,解可得m=6;故答案为:6.5.若直线l1:x+4y﹣1=0与l2:kx+y+2=0互相垂直,则k的值为﹣4.【考点】直线的一般式方程与直线的垂直关系.【分析】利用直线与直线垂直的性质求解.【解答】解:∵直线l1:x+4y﹣1=0与l2:kx+y+2=0互相垂直互相垂直,∴﹣•(﹣k)=﹣1,解得k=﹣4故答案为:﹣46.函数f(x)=x3﹣3x的单调减区间为(﹣1,1).【考点】利用导数研究函数的单调性.【分析】求函数的导函数,令导函数小于零,解此不等式即可求得函数y=x3﹣3x7/19的单调递减区间.【解答】解:令y′=3x2﹣3<0解得﹣1<x<1,∴函数y=x3﹣3x的单调递减区间是(﹣1,1).故答案为:(﹣1,1).7.在正方体ABCD﹣A1B1C1D1中,与AB异面且垂直的棱共有4条.【考点】空间中直线与直线之间的位置关系.【分析】画出正方体,利用数形结合思想能求出结果.【解答】解:如图,在正方体ABCD﹣A1B1C1D1中,与AB异面且垂直的棱有:DD1,CC1,A1D1,B1C1,共4条.故答案为:4.8.已知函数f(x)=cosx+sinx,则的值为0.【考点】导数的运算.【分析】求函数的导数,利用代入法进行求解即可.【解答】解:函数的导数为f′(x)=﹣sinx+cosx,则f′()=﹣sin+cos=﹣+=0,故答案为:09.“a=b”是“a2=b2”成立的充分不必要条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分又不必要”)8/19【考点】必要条件、充分条件与充要条件的判断.【分析】结合充分条件和必要条件的定义进行判断.【解答】解:若a2=b2,则a=b或a=﹣b,即a=b”是“a2=b2”成立的充分不必要条件,故答案为:充分不必要.10.若圆x2+y2=4与圆(x﹣t)2+y2=1外切,则实数t的值为±3.【考点】圆与圆的位置关系及其判定.【分析】利用圆x2+y2=4与圆(x﹣t)2+y2=1外切,圆心距等于半径的和,即可求出实数t的值.【解答】解:由题意,圆心距=|t|=2+1,∴t=±3,故答案为±3.11.如图,直线l是曲线y=f(x)在点(4,f(4))处的切线,则f(4)+f'(4)的值等于.【考点】利用导数研究曲线上某点切线方程;导数的运算.【分析】根据题意,结合函数的图象可得f(4)=5,以及直线l过点(0,3)和(4,5),由直线的斜率公式可得直线l的斜率k,进而由导数的几何意义可得f′(4)的值,将求得的f(4)与f′(4)的值相加即可得答案.【解答】解:根据题意,由函数的图象可得f(4)=5,直线l过点(0,3)和(4,5),则直线l的斜率k==又由直线l是曲线y=f(x)在点(4,f(4))处的切线,则f′(4)=,9/19则有f(4)+f'(4)=5+=;故答案为:.12.椭圆(a>b>0)的左、右焦点分别为F1、F2,若椭圆上存在点P,满足∠F1PF2=120°,则该椭圆的离心率的取值范围是[,1).【考点】椭圆的简单性质.【分析】如图根据椭圆的性质可知,∠F1PF2当点P在短轴顶点(不妨设上顶点A)时最大,要椭圆上存在点P,满足∠F1PF2=120°,∠F1AF2≥120°,∠F1AO≥60°,即可,【解答】解:如图根据椭圆的性质可知,∠F1PF2当点P在短轴顶点(不妨设上顶点A)时最大,要椭圆上存在点P,满足∠F1PF2=120°,∠F1AF2≥120°,∠F1AO≥60°,tan∠F1AO=,故椭圆离心率的取范围是[,1)故答案为[,1)13.已知A(3,1),B(﹣4,0),P是椭圆上的一点,则PA+PB的最大值为.【考点】椭圆的简单性质.【分析】由题意画出图形,可知B为椭圆的左焦点,A在椭圆内部,设椭圆右焦10/19点为F,借助于椭圆定义,把|PA|+|PB|的最大值转化为椭圆上的点到A的距离与F距离差的最大值求解.【解答】解:由椭圆方程,得a2=25,b2=9,则c2=16,∴B(﹣4,0)是椭圆的左焦点,A(3,1)在椭圆内部,如图:设椭圆右焦点为F,由题意定义可得:|PB|+|PF|=2a=10,则|PB|=10﹣|PF|,∴|PA|+|PB|=10+(|PA|﹣|PF|).连接AF并延长,交椭圆与P,则此时|PA|﹣|PF|有最大值为|AF|=∴|PA|+|PB|的最大值为10+.故答案为:10+14.已知函数f(x)=lnx,g(x)=﹣2x,当x>2时k(x﹣2)<xf(x)+2g'(x)+3恒成立,则整数k最大值为5.【考点】利用导数求闭区间上函数的最值.【分析】k(x﹣2)<xf(x)+2g′(x)+3恒成立,等价于k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,分离参数,从而可转化为求函数的最小值问题,利用导数即可求得,即可求实数a的取值范围.【解答】解:因为当x>2时,不等式k(x﹣2)<xf(x)+2g′(x)+3恒成立,即k(x﹣2)<xlnx+2(x﹣2)+3对一切x∈(2,+∞)恒成立,亦即k<=+2对一切x∈(2,+∞)恒成立,所以不等式转化为k<+2对任意x>2恒成立.11/19设p(x)=+2,则p′(x)=,令r(x)=x﹣2lnx﹣5(x>2),则r′(x)=1﹣=>0,所以r(x)在(2,+∞)上单调递增.因为r(9)=4(1﹣ln3)<0,r(10)=5﹣2ln10>0,所以r(x)=0在(2,+∞)上存在唯一实根x0,且满足x0∈(9,10),当2<x<x0时,r(x)<0,即p′(x)<0;当x>x0时,r(x)>0,即p′(x)>0.所以函数p(x)在(2,x0)上单调递减,在(x0,+∞)上单调递增,又r(x0)=x0﹣2lnx0﹣5=0,所以2lnx0=x0﹣5.所以[p(x)]min=p(x0)=+2=+2∈(5,6),所以k<[p(x)]min∈(5,6),故整数k的最大值是5.故答案为:5.二、解答题:本大题共6小题,共计90分.15.在三棱锥P﹣ABC中,AP=AB,平面PAB⊥平面ABC,∠ABC=90°,D,E分别为PB,BC的中点.(1)求证:DE∥平面PAC;(2)求证:DE⊥AD.【考点】直线与平面平行的判定.12/19【分析】(1)推导出DE∥PC,由此能证明DE∥平面PAC.(2)推导出AD⊥PB,BC⊥AB,从而AD⊥BC,进而AD⊥平面PBC,由此能证明DE⊥AD.【解答】证明:(1)因为D,E分别为PB,BC的中点,所以DE∥PC,…又DE⊄平面PAC,PC⊂平面PAC,故DE∥平面PAC.…(2)因为AP=AB,PD=DB,所以AD⊥PB,…因为平面PAB⊥平面ABC,平面PAB∩平面ABC=AB,又BC⊥AB,BC⊂平面ABC,所以BC⊥平面PAB,…因为AD⊂平面PAB,所以AD⊥BC,…又PB∩BC=B,PB,BC⊂平面ABC,故AD⊥平面PBC,…因为DE⊂平面PBC,所以D
本文标题:江苏省徐州市高二上期末数学试卷理科
链接地址:https://www.777doc.com/doc-2340633 .html