您好,欢迎访问三七文档
时间序列分析试题1.(1)给出),(qpARMA模型的一般形式及其模型参数。qtqtttptptttXXXX−−−−−−−−−−++++=εθεθεθεφφφ22112211。(2)若时间序列为}{tX,试给出其差分序列。}{1−−ttXX。(3)设)1,2(ARMA为1213.04.05.0−−−−++=tttttXXXεε,试给出其特征方程。04.05.02=−−λλ。(4)给出一阶自回归模型)1(ARtttXXεφ++=−110的特征跟和平稳域。特征根为φλ=,平稳域为1||φ。(5)对于)1,2(ARMA1211.05.0−−−−++=tttttaXXXεε,确定a的取值范围,使模型平稳。15.0−a,15.0+a,11−a,所以平稳域为:5.01−a。(6)给出一阶移动平均模型)1(MA13.0−−=tttXεε的自相关函数。此时0)3.0(1=−=−tttEEXεε211291.0)3.0)(3.0()0(εσεεεεγ=−−==−−tttttEEX,221113.0)3.0)(3.0()()1(εσεεεεγ−=−−==−−−−ttttttEXXE,0)3.0)(3.0()()(11=−−==−−−−−ktktttkttEXXEkεεεεγ(2≥k),33.0)0()1()1(−==γγρ,0)0()()(==γγρkk(2≥k)。(7)给出二阶自回归模型)2(ARttttXXXε++=−−212.05.0满足的Yule-Walker方程。)1(2.05.0)1(ρρ+=,2.0)1(5.0)2(+=ρρ;2.设时间序列}{tX满足)1,2(ARMAttBXBBε)4.01()5.01(2+=+−,(1)试分析序列}{tX的平稳性,(2)计算前3个Green函数0G、1G、2G。(1)此时特征方程为:05.02=+−λλ,特征根满足122||2,1=λ,序列}{tX平稳。(2)此时∑∞==0ktkktBGXε,tktkkBBGBBεε)4.01()5.01(02+=+−∑∞=,比较同次幂系数有:10=G,4.001=−GG,05.021=+−−−kkkGGG(2≥k)。3.设某时间序列的前10个样本自相关系数kρˆ和样本偏自相关系数kkφˆ如下表:k12345678910kρˆ-0.470.06-0.070.040.000.04-0.040.06-0.050.01kkφˆ-0.47-0.21-0.18-0.10-0.050.02-0.01-0.060.010.00(1)试给出时间序列的适用模型;(2)给出模型参数的矩估计。显然自相关系数1阶截尾,偏自相关系数拖尾;因此适用模型应为)1(MA:11−−=tttXεθε;此时2211111)1())(()()0(εσθεθεεθεγ+=−−==−−ttttttEXXE,21211111))(()()1(εσθεθεεθεγ−=−−==−−−−ttttttEXXE;2111)0()1()1(θθγγρ+−==,即0)1()1(121=++ρθθρ,根据可逆性要求,解得70.01=θ。4.设时间序列}{tX满足)1,1(ARMA116.08.0−−−+=ttttXXεε,若3.0100=X、01.0100=ε,试给出未来3期的预报值。234.06.08.0)6.08.0()1(ˆ100100100101100101100=−=−+==εεεXXEEXX,1872.08.0)6.08.0()2(ˆ101101102101102100==−+==EXXEEXXεε,14976.08.0)6.08.0()3(ˆ102102103102103100==−+==EXXEEXXεε;5.设时间序列}{tX满足)1,1(ARMA1125.05.0−−−+=ttttXXεε,其中),0(~2σεWNt,(1)试求)1(ρ;(2)证明}{tX的自相关系数满足125.0ρρ=。此时∑∞=−=0kktktGXε,所以101025.05.0−∞=−−∞=−−+=∑∑ttkktkkktkGGεεεε,比较两端系数有:10=G,25.025.05.001=−=GG,125.0GG=,112)5.0(5.0GGGkk−==;∑∑∞=∞=+===0221022)5.0(1)0(kkkktGGEXγ,∑∑∑∑∞=−∞=−∞=−−∞=−−+====112211110101)5.0())(()1(kkkkkkktkkktkttGGGGGGEXEXεεγ,∑∑∑∑∞=∞=−∞=−−∞=−−+====12211220202)5.0(5.0))(()2(kkkkkkktkkktkttGGGGGGEXEXεεγ,(1)27.0)5.0(1)5.0()0()1()1(0221112211≈++==∑∑∞=∞=−kkkkGGGγγρ;(2)∑∑∞=∞=++==022112211)5.0(1)5.0(5.0)0()2()2(kkkkGGGγγρ)1(5.0)5.0()5.0(5.0)5.0(1)5.0(112211122110221112211ρ=++++=∑∑∑∑∞=−∞=∞=∞=−kkkkkkkkGGGGGGG。6.证明:满足)1(AR的时间序列}{tX方差为:221)(φσε−=tXVar;特别当}{tX满足随机游走模型时,求}{tX的方差。解:此时tttXXεφ+=−1,因此)()(1tttXVarXVarεφ+=−)()(12ttVarXVarεφ+=−(因为tε与1−tX相互独立)22)(εσφ+=tXVar(因为tX平稳)于是221)(φσε−=tXVar。特别当}{tX满足随机游走模型时,1=φ,此时∞=)(tXVar。7.判定下述模型序列的稳定性:(1)1219.04.03.1−−−−=+−tttttXXXεε;此时的特征方程为04.03.12=+−λλ,解得8.01=λ,5.02=λ;模型序列平稳。(2)21216.07.11.07.0−−−−+−=+−ttttttXXXεεε;此时的特征方程为01.07.02=+−λλ,解得2.01=λ,5.02=λ;模型序列平稳。(3)21212.06.06.1−−−−+−=+−ttttttXXXεεε;此时的特征方程为06.06.12=+−λλ,解得11=λ,6.02=λ;模型序列不平稳,但是临界平稳。(4)tttXXε=−−11.1;此时的特征方程为01.12=−λλ,解得1.11=λ,02=λ;模型序列不平稳。(5)ttXBε=−2)1(;此时的特征方程为0)1(2=−λ,解得121==λλ;模型序列不平稳,但是临界平稳。8.求下述模型序列的前5个逆函数和逆转形式:(1)tttXXε=−−15.0;因为105.0−∞=−−==∑ttkktktXXXIε,所以10=I,5.01−=I,0432===III;ttXB)5.01(−=ε。(2)214.03.1−−+−=ttttXεεε;因为∑∑∑∞=−−∞=−−∞=−+−=020104.03.1kktkkktkkktktXIXIXIX,比较两端系数就有:2344.03.10III+−=,1234.03.10III+−=,0124.03.10III+−=,013.10II−=,01I=;解得:3.11=I,29.12−=I,157.13−=I,9881.04−=I;ttttXBBXBBXBB)5.015.08.018.0(3.01)5.01)(8.01(14.03.1112−−−=−−=+−=ε。(3)2114.03.15.0−−−+−=−tttttXXεεε;因为∑∑∑∞=−−∞=−−∞=−−+−=−0201014.03.15.0iitiiitiiitittXIXIXIXX,比较两端系数就有:2344.03.10III+−=,1234.03.10III+−=,0124.03.10III+−=,013.15.0II−=−,01I=;解得:8.01−=I,64.02−=I,512.03−=I,4096.04−=I;tiitttXXBXBBB)8.0(8.0114.03.115.0102∑∞==−=+−−=ε。9.某序列的逆函数为:5.01=I,2)7.0(3.0−=kkI(2≥k),求模型表达式。ttkkkiititXBBBXBBBXI)7.013.05.01())7.0(3.05.01(222220−++=++==∑∑∞=−−∞=−ε,1217.005.02.1−−−−=+−tttttXXXεε。10.若ARMA模型的Green函数为:1)9.0(4.0−=kkG(1≥k);求模型及参数。ttkkkkktkttBBBBGXεεεε)9.014.01())9.0(4.01(1111−+=+=+=∑∑∞=−−∞=−,115.09.0−−−=−ttttXXεε。11.对于模型115.06.0−−−=−ttttXXεε,给出1=l和2=l的预测。1115.06.0)5.06.0()1(ˆ−−+−+=−+==ttttttttXXEEXXεεεε,)5.06.0()2(ˆ112tttttXEEXXεε−+==+++113.01.036.05.06.0−+−+=−=tttttXEXεεε;此时111θφ−=G,11−=kkGGφ(2≥k),于是∑∑∞=−−−∞=−+=+⋅⋅+⋅⋅+⋅==022101)6.0(1.0)6.0(1.06.01.01.0)1(ˆkktktttkktktGXεεεεε,∑∑∞=−+∞=−+==0102)6.0(1.0)2(ˆkktkkktktGXεε;此时111θφ−=I,11−=kkIIθ(2≥k),于是∑∑∑∞=−+−∞=−++∞=−++==+==111111111)5.0(1.0)()1(ˆkktkkktktkktkttXXIXIEEXXε,∑∑∞=−+++∞=−+++=+==22112122)()2(ˆkktkttkktkttXIEXIXIEEXXε∑∑∞=−+−∞=−++=22111)5.0(1.0)5.0(1.0kktkkktkXX。12.对于)1,2(ARMA1214.03.0−−−−+−=tttttXXXεε,其中)256,0(~NIDtε,给定345=−tX,364=−tX,123==−−ttXX,161−=−tX,35−=tX,04=−tε;计算)(ˆlXt(4,3,2,1=l)及区间估计;若371−=+tX,修正)(ˆlXt(4,3,2=l)。由435434.03.0−−−−−−+−=tttttXXXεε解得8.243−=−tε,由324324.03.0−−−−−−+−=tttttXXXεε解得72.202=−tε,由213214.03.0−−−−−−+−=tttttXXXεε解得988.241−=−tε,由1214.03.0−−−−+−=tttttXXXεε解得7048.8−=tε,于是tttttttttXXXXEEXXεεε4.03.0)4.03.0()1(ˆ1111−−=−+−==−+−+,ttttttttXEXXXEEXX3.0)4.03.0()2(ˆ11212−=−+−==+++++εε,12231233.0)4.03.0()3(ˆ+++++++−=−+−==ttttttttEXEXXXEEXXεε,23342343.0)4.03.0()4(ˆ+++++++−=−+−==ttttttttEXEXXXEEXXεε;此时111θφ−=G,2211−−+=kkkGGGφφ(2≥k),2562=εσ,05.0=α;)(ˆlXt的区间估计为212121)(ˆ−+++±ltGGZlXεασ;若371−=+tX,则)1(ˆ11tttXX−=++ε;1112124.03.0)4.03.0()2(ˆ++++++−−=−+−==tttttttttXXXXEEXXεεε,12231233.0)4.03.0()3(ˆ+++++++−=−+−==ttttttttXEXXXEEXXεε,23342343.0)4.03.0()4(ˆ+++++++−=−+−==ttttt
本文标题:时间序列分析试题
链接地址:https://www.777doc.com/doc-2345254 .html