您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 泸州天立国际学校初2013级2013年中考数学模拟题
1/6泸州天立国际学校初2013级2013年中考模拟测试数学试卷(考试时间:120分钟,试卷满分110分)第Ⅰ卷选择题(共36分)一、选择题(每题3分,共36分)1.下列各式中,是最简二次根式的是A.8B.12C.12D.22.下列图案中,可以由一个”基本图案”连续旋转45得到的是3.化简154122的结果是A.52B.63C.3D.534.如果xy、满足31xyxy,则:xy的值为A.3:1B.2:(1)C.2:1D.3:(1)5.已知22222()4()50xyxy,则22xy的值为.A.-5或1B.-1C.5D.5或-16.如图,是的外接圆,是的直径,若的半径为5AC=42,,则sinB的值是A.45B.35C.D.(6题图)O⊙ABC△ADO⊙O⊙34432/67.在△ABC中,∠C=90°,tanA=13,则cosA的值为A.1010B.23C.34D.310108.如图,每个小正方形边长均为1,则下列图中的三角形(阴影部分)与左图中ABC△相似的是9.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=41AB,连结EM并延长,交BC的延长线于D,此时BC︰CD为A.1︰1B.2︰1C.3︰1D.3︰210.将抛物线2yx向左平移2个单位,向上平移3个单位后,得到(9题图)的抛物线的解析式是A.2(2)3yxB.2(2)3yxC.2(2)3yxD.2(2)3yx11.在同一坐标系中一次函数yaxb和二次函数2yaxbx的图象可能为.12.P是⊙O的直径CB延长线上一点,PA切⊙O于点A,如果PA=3,PB=1,则∠APC等于A.15B.30C.45D.60(12题图)A.B.C.D.ABC3/6县(区)学校姓名准考证号密封线内不要答题泸州天立国际学校初2013级2013年中考模拟测试数学试卷(考试时间:120分钟,试卷满分110分)一、选择题(每题3分,共36分)题号123456789101112答案第Ⅱ卷(非选择题共74分)二、填空题(每题3分,共15分)13.若,xy都是实数,且23324yxx,则xy.14.如图,光源P在横杆AB的正上方,AB在灯光下的影子为CD,AB∥CD,AB=2m,CD=6m,点P到CD的距离是2.7m,则AB与CD间的距离是__________m.15.2013年元旦,小王来到办公室后,与所有同事握手相庆新年的到来,在其带动下,所有同事均互相握手一次,据统计,办公室所有同事共握手66次.则小王办公室有名同事.16.已知扇形的圆心角为120°,半径为30cm,若将此扇形卷成一个圆锥,则这个圆锥的底面半径为cm.17.观察分析下列方程:①,②,③;请利用它们所蕴含的规律,求关于的方程221nnxnx(为正整数)的根,你的答案是:.三、计算题(每题5分,共15分)18.1013(21)31tan602332xx56xx712xxxn题号一二三四总分总分人复查人得分4/619.化简求值:3224(23)(1),2aaaaa23a其中,20.在10×5的正方形网格中,每个小正方形的边长均为单位1,将△ABC绕点A逆时针旋转90°,请你画出△AB′C′,并计算点C旋转过程中所经过的路径长.四、解答题(每题21~22题每题6分,23~24题每题7分,25题8分,26题10分,共44分)21.如图,在△ABC中,点D为AC上一点,延长AB至点E,连结DE,使∠ABC=∠ADE.求证:AB·AE=AC·AD5/622.已知关于x的一元二次方程2(41)210xmxm.⑴求证:不论为任何实数,方程总有两个不相等的实数根;⑵若方程的两根为12,xx,且满足121112xx,求m的值.23.如图水库大坝的横断面是梯形,坝顶宽6m,坝高24m,斜坡AB的坡度i1=1∶3,斜坡CD的坡度i2=1∶2.5,求⑴坝底宽AD;⑵若大坝长为500m,求修建大坝所需的土石方有多少m3.24.某商店将每件进价为80元的某种商品按每件100元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润.经过市场调查,发现这种商品单价每降低1元,其销售量可增加约10件.现将该商品降价x元,所获利润为y元.⑴试求y与x的函数关系式;⑵求将这种商品的售价降低多少时,能使销售利润最大?6/625.如图,已知AB是O⊙的直径,点C在O⊙上,过点C的直线与AB的延长线交于点P,ACPC,2COBPCB.⑴求证:PC是O⊙的切线;⑵若点M是AB的中点,CM交AB于点N,连结BM,求证:2BMMNMC.26.如图,已知抛物线223yxx与x轴交于A,B两点.⑴求该抛物线的顶点坐标及A、B两点的坐标;⑵设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB﹦8,并求出此时P点的坐标;⑶设(1)中抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.
本文标题:泸州天立国际学校初2013级2013年中考数学模拟题
链接地址:https://www.777doc.com/doc-2356578 .html