您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 概率论与数理统计统计课后习题答案总主编邹庭荣主编程述汉舒兴明第四章
1第四章习题解答1.设随机变量X~B(30,61),则E(X)=(D).A.61;B.65;C.625;D.5.1()3056EXnp2.已知随机变量X和Y相互独立,且它们分别在区间[-1,3]和[2,4]上服从均匀分布,则E(XY)=(A).A.3;B.6;C.10;D.12.()1()3EXEY因为随机变量X和Y相互独立所以()()()3EXYEXEY3.设X表示10次独立重复射击命中目标的次数,每次射中目标的概率为0.4,则X2的数学期望E(X2)=____18.4______.(10,0.4)()4()2.4XBEXDX22()(())()18.4EXEXDX4.某射手有3发子弹,射一次命中的概率为32,如果命中了就停止射击,否则一直射到子弹用尽.设表示X耗用的子弹数.求E(X).解:X123P2/32/91/922113()233999EX5.设X的概率密度函数为,01()2,120,xxfxxx其它求2(),().EXEX解:12201()()(2)1EXxfxdxxdxxxdx,122232017()()(2)6EXxfxdxxdxxxdx.26.设随机向量(X,Y)的联合分布律为:YX-112-10.250.10.320.150.150.05求(),(),().EXEYEXY解:X-12P0.650.35()0.650.3520.05EX.Y-112P0.40.250.35()0.40.2510.3520.55EY()(1)(1)0.25(1)10.1(1)20.32(1)0.15210.15220.050.25EXY7.设二维随机向量(X,Y)的联合概率密度为e0(,)0yxyfxy,,其它求(1)()EXY;(2)()EXY.解:()()(,)EXYxyfxydxdy0(())3yxxyedydx0()()(,)(())3yxEXYxyfxydxdyxyedydx8.设随机变量X与Y相互独立,且D(X)=1,D(Y)=2,则D(X-Y)=3.()()()3DXYDXDY9.设正方形的边长在区间[0,2]服从均匀分布,则正方形面积A=X2的方差为__64/45_______.41()1,(),123EXDXX的密度函数1/2,02()0xfx,其他2214()[()]()1.33EXEXDX24440116()()dd25EXxfxxxx2422216464()()[()]()5345DXEXEX310.设随机变量X的分布律为X-1012P1/51/21/51/10求D(X).解:22()()(())DXEXEX,1111()101255105EX,22221114()(1)01255105EX,224119()()(())52525DXEXEX.11.设随机变量X的概率密度函数为||1()e2xfx,求D(X).解:1()()02xEXxfxdxxedx,22201()()222xEXxfxdxxedx,22()()(())2DXEXEX.12.设随机变量X,Y相互独立,其概率密度函数分别为,01()2,120,Xxxfxxx其它e,0()0,yYyfy其它求D(X),D(Y),D(X-Y).解:由本章习题5知()1EX,27()6EX,于是有221()()(())6DXEXEX.由(1)YE知()()1EXDX.由于随机变量X,Y相互独立,所以7()()()6DXYDXDY.13.设D(X)=1,D(Y)=4,相关系数0.5XY,则cov(X,Y)=___1____.cov(X,Y)=()()1XYDXDY14.设二维随机变量(X,Y)的联合密度函数为41sin()0,0(,)2220xyxyfxy,,其它求cov(X,Y),XY.解:()(,)EXxfxydxdy22001sin()24xxydxdy,22()(,)EXxfxydxdy222001sin()2xxydxdy22011(cos+sin)2282xxdx,2221()()[()]2162DXEXEX.由对称性()()4EYEX,21()()2162DYDX.2200()()(,)12()sin()22EXYxyfxydxdyxyxydxdy,cov(X,Y)=22()()()().24EXYEXEY=-00461,22cov(,)21[()](2)=-0.2454.24162()()XYxyDXDY15.设二维随机变量(X,Y)有联合概率密度函数1(),02,02(,)80,xyxyfxy其它试求E(X),E(Y),cov(X,Y),XY.解:()(,)EXxfxydxdy220017()86xxydxdy,由对称性7()6EY.220014()()(,)()()83EXYxyfxydxdyxyxydxdy,cov(X,Y)=1()()()36EXYEXEY.5222220015()()(,)()()83EXxfxydxdyxxydxdy,2211()()(())36DXEXEX.由对称性11()36DY.cov(,)111()()XYxyDXDY16.设X,Y相互独立,XN(0,1),YN(1,2),Z=X+2Y,试求X与Z的相关系数.解:cov(,)cov(,2)()2cov(,)101XZXXYDXXY,()(2)()4()9DZDXYDXDY,cov(,)13()()xzxzDXDZ.17.设随机变量~XN(5,3),Y在[0,6]上服从均匀分布,相关系数12XY,求(1)(2)EXY;(2)(2)DXY.解:(2)()2()5231EXYEXEY,2(2)()4()4cov(,)()4()4()()61344339.122XYDXYDXDYXYDXDYDXDY18.设二维随机向量(X,Y)的概率密度为2,01,0(,)0,xyxfxy其它求(1)E(X+Y);(2)E(XY);(3)XY.解:100()()(,)2(())1xEXYxyfxydxdyxydydx;1001()()(,)2()4xEXYxyfxydxdyxydxdy;1002()(,)2()3xEXxfxydxdyxdydx1()()()3EYEXYEX6cov(X,Y)=1()()()36EXYEXEY1222001()(,)2()2xEXxfxydxdyxdydx1222001()(,)2()6xEYyfxydxdyydydx221()()(())18DXEXEX,221()()(())18DYEYEYcov(,)12()()xzxzDXDZ
本文标题:概率论与数理统计统计课后习题答案总主编邹庭荣主编程述汉舒兴明第四章
链接地址:https://www.777doc.com/doc-2362567 .html