您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 正弦稳态电路功率的分析
【标题】正弦稳态电路功率的分析【作者】吕晓蓉【关键词】功率功率因数无功补偿【指导老师】彭厚德【专业】电子信息科学与技术【正文】1.前言在电工和无线电技术等领域中存在着许多周期性的正弦、非正弦电压、电流(或信号)。对于非正弦电压、电流(或信号),可利用傅里叶变换,将周期性时间函数分解为许多不同频率和幅值的正弦时间函数之和。然后应用叠加定理对每一频率的正弦时间函数,用相量法计算它们的稳态响应,将所有这些响应叠加起来,就可以得到周期性时间函数激励下的稳态响应。对称的三相非正弦激励下的三相电路,也可以根据叠加定理,先分别计算各谐波电压单独作用时三相电路中的电压、电流谐波,然后叠加求出各电压、电流[1]。电路的正弦稳态是电路在正弦电压(流)的激励作用下,电路最终所达到的稳定状态。实际上,当电路中的自由响应衰减到可以不计时,便可认为电路进入了稳态。在正弦稳态下,电路中所有电流、电压都依电源的频率按正弦方式变化。按正弦规律变化的物理量称为正弦量。分析正弦电路,就是要找出正弦电路的变化规律,这个规律就是描述正弦电路方程的解。在时域中,描述正弦电路的方程是常系数微分(或积分)方程,它的完全解由两部分组成:一部分是对应齐次方程的通解---这部分解与激励性质无关,它可通过一般解微分方程的方法而求得;另一部分是方程的特解----它取决于激励形式。以正弦电流为例,数学表达式。式中三个量、、为正弦量的三要素。称为正弦电流的振幅(又称最大值或峰值)。它表示正弦电流变化过程中所能达到的最大值。称为正弦电流的角频率,它表达了正弦量的相位角()随时间变化的速度,或者说表示单位时间增加的相位角。描述交流电变化快慢除用角频率外,还用周期T来描述,周期T是指交流电变化一周所用的时间,即交流电从零开始变到最大,然后逐渐减小到零,接着反方向变到负的最大,最后又回到零所需时间。还可用频率f来描述交流电变化快慢。频率是指1S内交流电重复出现的次数。角频率和正弦量的周期T及频率f的关系为:。称为正弦电流的初相位(又称初相角),它是正弦量在t=0时刻的相角。两个同频率的正弦量之间的相位差与计时起点无关。当两个同频率正弦量的相位差为零时,称这两个正弦量同相;当相位差为180°时,称这两个正弦量为反相;当相位差为正时,称电压U领先电流I,领先角度为?,或称电流?落后电压?,落后角度为?[2]。研究分析正弦稳态电路的方法为相量法。而相量法则是用复数来表示正弦量的有效值和初相位。运用这一方法使得正弦电流电路的稳态分析成为与线性电阻电路的分析在形式上相同的问题。将相量形式的欧姆定律和基尔霍夫定律应用于电路的相量模型,建立相量形式的电路方程并求解,即可得到电路的正弦稳态响应。在分析时,画出电路中各电压、电流的相量图,往往对分析电路问题会有所帮助。用相量法分析正弦稳态响应的步骤可以归纳如下:(1)画出和时域电路相对应的电路相量模型;(2)建立相量形式的电路方程,求出响应的相量;(3)将求得的相量变换成对应的时域的实函数[3]。在电能、电信号的传输、处理和应用等技术领域中,有关功率计算问题是电路计算的一个非常重要的方面,因为任何电路都毫无例外地进行着由电源或信号源到负载的功率传输,在交流电路中,由电源供给负载的电功率有两种:一种是有功功率,一种是无功功率。功率因数是供用电系统的一项重要技术经济指标。在供电系统中,希望是功率因数越大越好,即电路中的视在功率将大部分用来转化成有功功率,以减少无功功率。用电设备在消耗有功功率的同时,还需大量的无功功率由电源送往负荷,功率因数反映的是用电设备在消耗一定的有功功率的同时所需的无功功率。负载功率因数的高低,关系到输配电线路、设备的供电能力,也影响到功率损耗,对于电力系统供电设备的充分利用,有着显著的影响[4]。提高功率因数常用的方法就是在保证负载功率不变的情况下,采用无功补偿来减小无功功率,从而提高功率因数。在日常生活中,一般的用电设备都是感性的,导致其功率因数都很低,影响了线路及配电变压器的经济运行。如工厂里的电动机,它会产生感性无功功率,不但使线路消耗电能,增加线路的负担,更是占用电源变压器的容量,是不好的。只有通过合理配置无功功率补偿设备,提高系统的功率因数,才能达到降低损耗的目的,获得经济利益。为了提高功率因数,必须增加无功功率补偿设备以减少无功功率。通常采用的方法是在感性负载上并联电容器,使感性负载与容性负载的无功功率相互补偿,这时对变压器来说就增加了功率的利用率。无功补偿装置就是配套的电容器(由许多只电容器并联而成),它由自动控制设备自动接入电路,既不会补偿不足,也不会补偿过头。在实际中,提高功率因数意味着:(1)提高用电质量,改善设备运行条件,可保证设备在正常条件下工作,这就有利于安全生产。(2)可节约电能,降低生产成本,提高经济效益。(3)能提高有功功率在视在功率中的比值,充分提高电能的利用率。(4)可减少线路的功率损失,提高电网输电效率。例如:当输出电压和功率一定时,=0.5时的线路损耗是=1时的4倍。(5)因发电机的发电容量的限定,提高功率因数也就使发电设备得到充分利用[5]。在实际用电过程中,提高负载的功率因数是最有效地提高电力资源利用率的方式。在现今可用资源接近匮乏的情况下,除了尽快开发新能源外,更好利用现有资源是我们解决燃眉之急的唯一办法,而对于目前人类所大量使用和无比依赖的电能来说,提高功率因数将是非常重要的。如何提高功率因数的问题,从理论上来讲,是一个比较简单的问题,因而对功率因数的提高与元件参数、电源电压、电源频率的关系,研究的文献不是很多。本文将对不同性质负载的电路,如何提高功率因数的问题进行详细的讨论。2.正弦电流电路中的功率在电能、电信号的传输、处理和应用等技术领域中,有关电功率的问题都是有重要意义的。在这一节里讨论正弦电流电路中的功率。设有一个二端网络,取电压、电流的参考方向如图2.1所示。2.1瞬时功率设:式(2-1)式(2-2)其中则无源一端口网络吸收的功率为式(2-3)可见,功率由两部分组成,一部分为,它是与时间无关的恒定分量;另一部分为,它是时间的周期函数,角频率为2。或者说,它由不可逆分量和可逆分量两部分组成。R、L、C元件的瞬时功率:电阻是耗能元件,任一时刻吸收的电功率为非负值,电感、电容的瞬时功率是正负对称交变的,一周期内吸收的电能与放出的电能相等。它们是不耗能的、储能的无源元件。电阻R:?=0,式(2-4)电感L:?=?/2,式(2-5)电容C:?=-?/2,式(2-6)2.2平均功率平均功率指瞬时功率在一周期内的平均值,又称为有功功率,简称为功率。平均功率是用电设备将电能转换为其他形式能量(如机械能,光能,热能)的电功率。式(2-7)可求得式(2-8)其中。P的单位为瓦特(W)。上式说明正弦电流电路的有功功率不仅与电流、电压的有效值有关,而且与它们之间的相位差的余弦有关,此称为电路的功率因数,取值是在0~?的范围内。R、L、C元件的平均功率:如使用有效值,电阻元件所消耗的平均功率可以按直流电阻电路中所用的公式来计算。在正弦激励时,电感、电容所吸收的平均功率均为零。电阻元件R:,式(2-9)电感元件L:,式(2-10)电容元件C:,式(2-11)2.3无功功率无功功率通俗地讲就是不消耗电能的用电设备所消耗的功率,它是用于电路内电场与磁场的交换,并用来在电气设备中建立和维持电场或磁场的电功率。它对外不做功,而是电磁能的相互转换,表示电路的储能元件与电源之间所交换的那一部分能量。网络N的无功功率Q定义为:式(2-12)即瞬时功率可逆部分的幅值。无功功率的单位为乏(Var),可用无功功率表测量。R、L、C元件的无功功率:电阻不吸收无功功率,电感吸收正值的无功功率,电容吸收负值的无功功率。电阻元件R:式(2-13)电感元件L:式(2-14)电容元件C:式(2-15)2.4视在功率依照直流电路中的功率等于电流和电压相乘积的关系,将正弦交流电路中电流有效值与电压有效值的乘积叫做视在功率,也称为表观功率,它表示在满足一端口电路有功功率和无功功率两者的须要时,要求外部提供的功率容量,以表示,单位伏、安(),以区别有功功率和无功功率。许多电气设备上都标有额定电压和额定电流值,把它们二者的乘积称为容量,所以视在功率往往是指电气设备的容量。视在功率,平均功率和无功功率之间满足直角三角形的关系。称为功率三角形,如图2.2所示,可知:????????????2.5复功率复功率没有实际意义,只是一个计算用的复数。定义复功率的目的是为了能直接用电压电流相量来求解功率问题,使三个功率的关系变得一目了然。复功率概念适用于单个元件或任何一段电路。定义复功率式(2-16)即复功率的实部为有功功率,虚部为无功功率。在正弦稳态下,任一电路的所有支路吸收的复功率之代数和为零,这称为复功率平衡定理:2.6功率因数功率因数表达式为:式(2-17)不能反映的正负,需另加说明。常以“滞后”表示电流滞后于电压,角为正;以“超前”表示电流超前于电压,角为负。功率因数小于或等于1。功率因数的大小说明有功功率占视在功率的比例。功率因数决定于电路端电压和电流之间的相位差。小于1,电路中就发生能量互换,出现无功功率,在实际计算中,可用电能值代替相应的功率[6]。2.7小结本章从分析无源一端口网络的瞬时功率出发,分析了有功功率、无功功率、视在功率、功率因数提高以及各个功率之间的相互关系。为了方便正弦电路中相量的计算,引入了复功率的概念。最后通过电路中复功率的守恒,进而得出有功功率守恒和无功功率守恒。3.电源电压、频率不变,元件参数对功率因数的影响下面就电源电压、电源频率不变的情况下,分不同电路讨论元件参数对功率因数的影响。3.1感性电路在等效串联电路中,要知道此负载是容性的还是感性的,可判断容抗和感抗的大小。如果,则此负载属于感性的。则与简单的电路一样。下面要研究的是即感性负载。分四种情况讨论对功率因数的改善:串联电容和电感;关联电容和电感。对串联电路,电路图及相量图如图3.1、3.2所示,正弦电压U=380V,f=50Hz。且令R=30Ω,L=127mH。此时电路的功率因数为0.6。以电流为参考相量3.1.1串联电容在电路中串联一个电容,电路中电感所消耗的无功功率与电容所消耗的无功功率可以相互补偿,用这种补偿的方法可以达到降低无功功率的目的。其电路图和相量图如图3.3、3.4所示:串联电容前的阻抗:式(3-1)功率因数:式(3-2)串联电容后的阻抗:式(3-3)功率因数:式(3-4)要提高电路的功率因数,则有,所以,当,即时电路的功率因数会增大,且有,即时电路的功率因数取最大值;而当,即,电路的功率因数反而会减小。计算结果表明:当电容C的值大于39时,电路的功率因数大于0.6。当电容C的值等于78时,电路的功率因数达到最大值1(此时电路发生谐振),当电容C的值小于39时,电路的功率因数小于0.6。3.1.2串联电感在电路中串联一个电感。电路图和相量图如下:当电路中串联电感时,阻抗增大,功率因数只会减少,不会提高。3.1.3并联电容在感性负载的两端并联一个电容。并联电容后不会影响原电路的有功功率,但并联电容后,电容的无功功率“补偿”了电感的无功功率,减少了电源的无功功率,从而改善电路的功率因数。其电路图和相量图如下:电路中的导纳(如图3.9)式(3-5)并联电容前的导纳:式(3-6)功率因数:式(3-7)并联电容后的导纳:式(3-8)功率因数:式(3-9)要提高电路的功率因数,则:即即所以当时,电路的功率因数会提高。且有当时,电路的功率因数取最大值1;而当电容时,电路的功率因数反而会减小。计算结果表明:当电容C的值小于125时,电路的功率因数大于0.6。当电容C的值等于62.5时,电路的功率因数达到最大值1(此时电路发生谐振),当电容C的值大于125时,电路的功率因数小于0.6。3.1.4并联电感在电路中并联一个电感。电路图和相量图如下:如果并联电感,由相量图可知,电路总电流将增加,功率因数只会减少,不会提高。与前面的讨论可以看出,在感性电路中串联电
本文标题:正弦稳态电路功率的分析
链接地址:https://www.777doc.com/doc-2363901 .html