您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 求阴影部分面积的测试题
锦华教育——2013年最新阴影部分面积全攻略求在近年的中考中,频频出现求阴影部分图形的面积的题目,而其阴影部分图形大多又是不规则的,部分同学乍遇这类题目则显得不知所措.下面将分类例谈这类问题的解法:一.直接法:当已知图形为我们熟知的基本图形时,先求出涉及适合该图形的面积计算公式中某些线段、角的大小,然后直接代入公式进行计算。例1.如图1,矩形ABCD中,AB=1,AD=3,以BC的中点E为圆心的MPN与AD相切于P,则图中的阴影部分的面积为()A23B34C34D3图1图2二.和差法:即是把阴影部分的面积转化为若干个图形面积的和、差来计算。例2,如图2,正方形ABCD的边长为a,以A为圆心,AB为半径画BD,又分别以BC和CD为直径画半圆,则图中的阴影部分的面积为_______.三.割补法:即是把阴影部分的图形通过割补,拼成规则图形,然后再求面积。例3,如图3(1),在以AB为直径的半圆上,过点B做半圆的切线BC,已知AB=BC=a,连结AC,交半圆于D,则阴影部分图形的面积是______.图3练习:1、如图1,将半径为2cm的⊙O分割成十个区域,其中弦AB、CD关于点O对称,EF、GH关于点O对称,连接PM,则图中阴影部分的面积是_____cm2(结果用π表示).2、如图2,在两个同心圆中,三条直径把大圆分成相等的六部分,若大圆的半径为2,则图中阴影部分的面积为_______.3、如图3,在Rt△ABC中,已知∠BCA=90°,∠BAC=30°,AB=6cm,把△ABC以点B为中心旋转,使点C旋转到AB边的延长线上的点C′处,那么AC边扫过的图形(图中阴影部分)的面积是_______cm2(不取近似值).四.整体法:例4.如图4,,,,,ABCDE相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE,则图中五个扇形(阴影部分)的面积之和是()A.B.1.5C.2D.2.5图4五.等积变形法(思想:)把所求阴影部分的图形适当进行等积变形,即是找出与它面积相等的特殊图形,从而求出阴影部分图形的面积。例5.如图5,C、D是半圆周上的三等份点,圆的半径为R,求阴影部分的面积。练习:1、如图6,AB是⊙O的直径,C、D是AB上的三等分点,如果⊙O的半径为1,P是线段AB上的任意一点,则图中阴影部分的面积为()A.3B.6C.2D.232、如图1,A是半径为2的⊙O外一点,OA=4,AB是⊙O的切线,点B是切点,弦BC∥OA,连结AC,求图中阴影部分的面积。六.平移法:即是先把分散的图形平移在一起,然后再计算其面积。例6.如图6,矩形内有两个相邻的正方形,面积分别为4和2,那么阴影部分的面积为______.(1)(2)图6Ex:如图5,在两个半圆中,大圆的弦MN与小圆相切于点D,MN∥AB,MN=8cm,ON、CD分别是两圆的半径,求阴影部分的面积。七.代数法.当利用以上方法求解都较困难时,可将题设中几何图形条件转化为代数条件,然后列方程求解.思考题:.如图7,正方形的边长为a,分别以四个顶点为圆心,以边长a为半径画弧,求四条弧围成的阴影部分的面积图7
本文标题:求阴影部分面积的测试题
链接地址:https://www.777doc.com/doc-2368244 .html