您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 摄影测量-空间前交后交
空间后交-前交程序设计(实验报告)姓名:班级:学号:时间:空间后交-前交程序设计一、实验目的用C、VB或MATLAB语言编写空间后方交会-空间前方交会程序⑴提交实习报告:程序框图、程序源代码、计算结果、体会⑵计算结果:像点坐标、地面坐标、单位权中误差、外方位元素及其精度二、实验数据f=150.000mm,x0=0,y0=0三、实验思路1.利用空间后方交会求左右像片的外方位元素(1).获取m(于像片中选取两点,于地面摄影测量坐标系中选取同点,分别计算距离,距离比值即为m),x,y,f,X,Y,Z(2).确定未知数初始值Xs,Ys,Zs,q,w,k(3).计算旋转矩阵R(4).逐点计算像点坐标的近似值(x),(y)(5).组成误差方程式(6).组成法方程式(7).解求外方位元素(8).检查是否收敛,即将求得的外方位元素的改正数与规定限差比较,小于限差即终止;否则用新的近似值重复步骤(3)-(7)2.利用求出的外方位元素进行空间前交,求出待定点地面坐标(1).用各自像片的角元素计算出左、右像片的方向余弦值,组成旋转矩阵R1,R2(2).根据左、右像片的外方位元素,计算摄影基线分量Bx,By,Bz(3).计算像点的像空间辅助坐标(X1,Y1,Z1)和(X2,Y2,Z2)(4).计算点投影系数N1和N2(5).计算未知点的地面摄影测量坐标四、实验过程⑴程序框图⑵程序代码函数AandL%求间接平差时需要的系数输入计算输出spacehoujiaospaceqianiaotestvarAAndLdeg2dmsxyok%%%已知%a=像点坐标x,b=像点坐标y,f内方位元素主距%φ=q,ψ=w,κ=k%像空间坐标系X,Y,Z%地面摄影测量坐标系Xs,Ys,Zsfunction[A1,L1,A2,L2]=AandL(a,b,f,q,w,k,X,Y,Z,Xs,Ys,Zs)%%%%%%%%%%%选择矩阵元素a1=cos(q)*cos(k)-sin(q)*sin(w)*sin(k);a2=-cos(q)*sin(k)-sin(q)*sin(w)*cos(k);a3=-sin(q)*cos(w);b1=cos(w)*sin(k);b2=cos(w)*cos(k);b3=-sin(w);c1=sin(q)*cos(k)+cos(q)*sin(w)*sin(k);c2=-sin(q)*sin(k)+cos(q)*sin(w)*cos(k);c3=cos(q)*cos(w);%%%%%%%共线方程的分子分母X_=a1*(X-Xs)+b1*(Y-Ys)+c1*(Z-Zs);Y_=a2*(X-Xs)+b2*(Y-Ys)+c2*(Z-Zs);Z_=a3*(X-Xs)+b3*(Y-Ys)+c3*(Z-Zs);%%%%%%%近似值x=-f*X_/Z_;y=-f*Y_/Z_;%%%%%%%A组成L组成a11=1/Z_*(a1*f+a3*x);a12=1/Z_*(b1*f+b3*x);a13=1/Z_*(c1*f+c3*x);a21=1/Z_*(a2*f+a3*y);a22=1/Z_*(b2*f+b3*y);a23=1/Z_*(c2*f+c3*y);a14=y*sin(w)-(x/f*(x*cos(k)-y*sin(k))+f*cos(k))*cos(w);a15=-f*sin(k)-x/f*(x*sin(k)+y*cos(k));a16=y;a24=-x*sin(w)-(y/f*(x*cos(k)-y*sin(k))-f*sin(k))*cos(w);a25=-f*cos(k)-y/f*(x*sin(k)+y*cos(k));a26=-x;lx=a-x;ly=b-y;%%%%%%%%%组成一个矩阵,并返回A1=[a11,a12,a13,a14,a15,a16];A2=[a21,a22,a23,a24,a25,a26];L1=lx;L2=ly;函数deg2dms%%%%%%%%角度转度分秒functiony=deg2dms(x)a=floor(x);b=floor((x-a)*60);c=(x-a-b/60)*3600;y=a+(b/100)+(c/10000);函数dms2deg%%%%%度分秒转度functiony=dms2deg(x)a=floor(x);b=floor((x-a)*100);c=(x-a-b/100)*10000;y=a+b/60+c/3600;函数ok%%%%%%%%%%%%%%目的是为了保证各取的值的有效值%%xy为n*1,a为1*nfunctionresult=ok(xy,a)formatshortgi=size(xy,1);forn=1:io=xy(n)-floor(xy(n,1));o=round(o*(10^a(n)))/(10^a(n));xy(n,1)=floor(xy(n,1))+o;endformatlonggresult=xy;函数rad2dmsxy%%%%求度分秒表现形式的三个外方位元素,三个角度functionxydms=rad2dmsxy(xy)[a,b,c,d,e,f]=testvar(xy);d=deg2dms(rad2deg(d));e=deg2dms(rad2deg(e));f=deg2dms(rad2deg(f));xydms=[a,b,c,d,e,f]';函数spacehoujiao%%%%%%%空间后交%%%f%%输入p(2*n,1)%%像点坐标x,y,X,Y,Z,均为(n,1)function[xy,m,R]=spacehoujiao(p,x,y,f,X,Y,Z)formatlong;%%%%%权的矢量化,这是等精度时的,如果非,将函数参数改为PP=diag(p);%%求nj=size(X,2);%%初始化Xs=0;Ys=0;Zs=0;forn=1:jXs=Xs+X(n);Ys=Ys+Y(n);Zs=Zs+Z(n);endSx=sqrt((x(2)-x(1))^2+(y(2)-y(1))^2);%%%%两像点之间距离Sd=sqrt((X(2)-X(1))^2+(Y(2)-Y(1))^2);%%%%两地面控制点之间距离m=Sd/Sx;%%%%图像比例系数Xs=Xs/j;Ys=Ys/j;Zs=m*f+Zs/j;m0=0;q=0;w=0;k=0;i=0;a=rand(2*j,6);l=rand(2*j,1);%%%%forn=1:j[a(2*n-1,:),l(2*n-1,1),a(2*n,:),l(2*n,1)]=AandL(x(n),y(n),f,q,w,k,X(n),Y(n),Z(n),Xs,Ys,Zs);enddet=inv(a'*P*a)*transpose(a)*P*l;%%%%%%%%%循环体while1%%%%%%%%%%%%%%%%[dXs,dYs,dZs,dq,dw,dk]=testvar(det);detXs=abs(dXs);detYs=abs(dYs);detZs=abs(dZs);detq=abs(dq);detw=abs(dw);detk=abs(dk);%%%%%%%%%if((detXs0.01)&&(detYs0.01)&&(detZs0.01)&&(detqpi/648000)&&(detwpi/648000)&&(detkpi/648000))break;elseV=(a*det-l);Q=inv(a'*P*a);m0=m0+sqrt((V'*P*V)/(2*j-6));%%m0需要每次的改正数算出来相加%%%Xs=Xs+dXs;Ys=Ys+dYs;Zs=Zs+dZs;q=q+dq;w=w+dw;k=k+dk;%%%forn=1:j[a(2*n-1,:),l(2*n-1,1),a(2*n,:),l(2*n,1)]=AandL(x(n),y(n),f,q,w,k,X(n),Y(n),Z(n),Xs,Ys,Zs);enddet=inv(a'*P*a)*transpose(a)*P*l;i=i+1;%%%%end%%%end[dXs,dYs,dZs,dq,dw,dk]=testvar(det);detXs=abs(dXs);detYs=abs(dYs);detZs=abs(dZs);detq=abs(dq);detw=abs(dw);detk=abs(dk);V=(a*det-l);Q=inv(a'*P*a);m0=m0+sqrt((V'*P*V)/(2*n-6));%%%Xs=Xs+dXs;Ys=Ys+dYs;Zs=Zs+dZs;q=q+dq;w=w+dw;k=k+dk;%%%%%%%%%%%%%可以输出迭代次数的i%%%%%%%%%%%%Xs,Ys,Zs,q,w,k,i,dXs,dYs,dZs,dq,dw,dk,detXs,detYs,detZs%%%%%%%%%%%精度mo=m0*sqrt(Q);m=[mo(1,1),mo(2,2),mo(3,3),mo(4,4),mo(5,5),mo(6,6)]';[mXs,mYs,mZs,mq,mw,mk]=testvar(m);%%%%%%%%%输出xy=[Xs,Ys,Zs,q,w,k]';%%输出(6,1)的外方位元素m=[m0,mXs,mYs,mZs,mq,mw,mk]';%%单位误差,各元素中误差R=xyR(xy);%%旋转矩阵函数spaceqianjiao%%空间前交%输入f%输入x1,y1,x2,y2,R1,R2,xy1,xy2(n,1)%输出X,Y,Z(n,1)function[X,Y,Z]=spaceqianjiao(x1,y1,x2,y2,f,R1,R2,xy1,xy2)i=size(x1,2);[Xs1,Ys1,Zs1,q1,w1,k1]=testvar(xy1);[Xs2,Ys2,Zs2,q2,w2,k2]=testvar(xy2);forn=1:i[X1(n),Y1(n),Z1(n)]=testvar(R1*[x1(n),y1(n),-f]');[X2(n),Y2(n),Z2(n)]=testvar(R2*[x2(n),y2(n),-f]');Bx=Xs2-Xs1;By=Ys2-Ys1;Bz=Zs2-Zs1;N1=(Bx*Z2(n)-Bz*X2(n))/(X1(n)*Z2(n)-X2(n)*Z1(n));N2=(Bx*Z1(n)-Bz*X1(n))/(X1(n)*Z2(n)-X2(n)*Z1(n));X(n)=Xs1+N1*X1(n);Z(n)=Zs1+N1*Z1(n);Y(n)=0.5*((Ys1+N1*Y1(n))+(Ys2+N2*Y2(n)));end函数testvar%分割矩阵。。%%将矩阵的每行元素打包给元素。。%%%用法[Xs1,Ys1,Zs1,q1,w1,k1]=testvar(xy1);function[varargout]=testvar(arrayin)fork=1:nargoutvarargout{k}=arrayin(k,:);end函数xyR%计算旋转矩阵,通过六个内方位元素%xy(6,1)function[R]=xyR(xy)[a,b,c,q,w,k]=testvar(xy);a1=cos(q)*cos(k)-sin(q)*sin(w)*sin(k);a2=-cos(q)*sin(k)-sin(q)*sin(w)*cos(k);a3=-sin(q)*cos(w);b1=cos(w)*sin(k);b2=cos(w)*cos(k);b3=-sin(w);c1=sin(q)*cos(k)+cos(q)*sin(w)*sin(k);c2=-sin(q)*sin(k)+cos(q)*sin(w)*cos(k);c3=cos(q)*cos(w);R=[a1,a2,a3;b1,b2,b3;c1,c2,c3];命令行f=0.15;%%空间后交%像片坐标x11=(1e-3)*[16.012,88.56,13.362,82.24];y11=(1e-3)*[79.963,81.
本文标题:摄影测量-空间前交后交
链接地址:https://www.777doc.com/doc-2380432 .html