您好,欢迎访问三七文档
数值分析思考题91、一个算法局部误差和整体误差的区别是什么?如何定义常微分方程数值方法的阶?称()nnneyxy为某方法在点nx的整体截断误差,设ny是准确的,用某种方法计算ny时产生的截断误差,称为该方法的局部截断误差。可以知道,整体误差来自于前面误差积累,而局部误差只来自于ny的误差。如果给定方法的局部截断误差为11()pnTOh,其中p为自然数,则称该方法是p阶的或具有p阶精度。2、显式方法和隐式方法的优缺点分别是什么?多步法中为什么还要使用单步法?显式方法优点:方法简单快速。缺点:精度低。隐式方法优点:稳定性好。缺点:精度低,计算量大。多步法需要多个初值来启动迭代,而初值的计算需要用到单步法。3、刚性问题的求解困难主要体现在哪儿?计算刚性问题的最简单的稳定方法是什么?了保证数值稳定性,步长h需要足够小,但是为了反映解的完整性,x区间又需要足够长,计算速度变慢。最简单的稳定方法就是扩大绝对稳定域。4、分别用欧拉向前法、欧拉向后法、改进的欧拉法、经典的四阶Runge-Kutta法、四阶Adams方法计算下列微分方程初值问题的解。(1)3,12(1)0.4dyyxxdxxy;(2)'109,'1011,yyzzyz满足(1)1,(1)1,yz,12x。解:(1)取步长为0.1,向前Euler公式:3101=0.11.(,)()nnnnnnnyyhfxyxyx向后Euler公式:41111110101.(,).nnnnnnnnxyxyyhfxyx改进的Euler公式:11333113211(,),(,)20.10.12nnnnnnnnnnnnnnnnnhyyfxyfxyhfxyyxyyxxxxx经典的四阶Runge-Kutta法:11234226()nnhyykkkk1(,)nnkfxy2122(,)nnhhkfxyk3222(,)nnhhkfxyk43(,)nnkfxhyhk四阶显示Adams方法:01112233555937924()[(,)(,)(,)(,)]nnnnnnnnnnhyyfxyfxyfxyfxy01111122919524()[(,)(,)(,)(,)]nnnnnnnnnnhyyfxyfxyfxyfxyX向前Euler向后Euler改进的Euler经典的四阶Runge-Kutta四阶显示Adams1.00.40000.40000.40000.40000.40001.10.46000.48870.47560.47460.47461.20.55130.61060.58340.58140.58141.30.67810.77100.72810.72510.72511.40.84570.97570.91530.91120.91121.51.05971.23111.15111.14581.14581.61.32651.54421.44221.43571.43571.71.65321.92241.79571.78811.78811.82.04732.37372.21962.21062.21061.92.51672.90672.72202.71172.71172.03.07023.53023.31173.30003.3000(2)二元微分方程组,经典的四阶Runge-Kutta法公式为:11234226()nnhyykkkk11234226()nnhzzLLLL1(,,)nnnkfxyz211222(,,)nnnhhhkfxykzL322222(,,)nnnhhhkfxykzL433(,,)nnnkfxhyhkzhL1(,,)nnnLgxyz211222(,,)nnnhhhLgxykzL322222(,,)nnnhhhLgxykzL433(,,)nnnLgxhyhkzhL改进的欧拉即为特殊的二阶龙格-库塔,公式在此不累述,注意系数。思路同上,四点Adams公式在此也不累述,注意前四项须由四阶龙格-库塔求得以启动迭代。编程求解得x改进的Euler经典的四阶Runge-Kutta四点阶Adamsyzyzyz1.01.00001.00001.00001.00001.00001.00001.10.90480.90480.90480.90480.90480.90481.20.81870.81870.81870.81870.81870.81871.30.74080.74080.74080.74080.74080.74081.40.67030.67030.67030.67030.67030.67031.50.60650.60650.60650.60650.60650.60651.60.54880.54880.54880.54880.54880.54881.70.49660.49660.49660.49660.49660.49661.80.44930.44930.44930.44930.44930.44931.90.40660.40660.40660.40660.40660.40662.00.36790.36790.36790.36790.36790.3679取步长h=0.1,则向前Euler公式:1=09(,,).nnnnnnyyhfxyzz1=-01(,,).nnnnnnnzyhgxyzyz向后Euler公式:1092109221....nnnyzy11092121...nnnzyz编程求解得x向前Euler向后Euleryzyz1.01.00001.00001.00001.00001.10.90000.90000.90910.90911.20.81000.81000.82640.82641.30.72900.72900.75130.75131.40.65610.65610.68300.68301.50.59050.59050.62090.62091.60.53140.53140.56450.56451.70.47830.47830.51320.51321.80.43050.43050.46650.46651.90.38740.38740.42410.42412.00.34870.34870.38550.3855
本文标题:数值分析思考题9
链接地址:https://www.777doc.com/doc-2387493 .html