您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学专题讲解之函数与基本初等函数
选校网专业大全历年分数线上万张大学图片大学视频院校库函数概念与基本初等函数(一)函数1.了解构成函数的要素,了解映射的概念,会求一些简单函数的定义域和值域.2.理解函数的三种表示法:解析法、图象法和列表法,能根据不同的要求选择恰当的方法表示简单的函数。3.了解分段函数,能用分段函数来解决一些简单的数学问题。4.理解函数的单调性,会讨论和证明一些简单的函数的单调性;理解函数奇偶性的含义,会判断简单的函数奇偶性。5.理解函数的最大(小)值及其几何意义,并能求出一些简单的函数的最大(小)值.6.会运用函数图像理解和研究函数的性质.(二)指数函数1.了解指数函数模型的实际背景。2.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算。3.理解指数函数的概念,会求与指数函数性质有关的问题。4.知道指数函数是一类重要的函数模型。(三)对数函数1.理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。2.理解对数函数的概念;会求与对数函数性质有关的问题.3.知道对数函数是一类重要的函数模型.4.了解指数函数与对数函数互为反函数()。(四)幂函数1.了解幂函数的概念。2.结合函数的图像,了解它们的变化情况。(五)函数与方程1.了解函数零点的概念,结合二次函数的图像,了解函数的零点与方程根的联系。2.理解并掌握连续函数在某个区间上存在零点的判定方法。能利用函数的图象和性质判别函数零点的个数.(六)函数模型及其应用[来源:学科网]1.了解指数函数、对数函数以及幂函数的增长特征。知道直线上升、指数增长、对数增长等不同函数类型增长的含义。2.了解函数模型(如指数函数、对数函数、幂函数、分段函数等在社会生活中普遍使用的函数模型)的广泛应用。3.能利用给定的函数模型解决简单的实际问题。知识网络考纲导读选校网专业大全历年分数线上万张大学图片大学视频院校库定义定义域区间对应法则值域一元二次函数一元二次不等式映射函数性质奇偶性单调性周期性指数函数根式分数指数指数函数的图像和性质指数方程对数方程反函数互为反函数的函数图像关系对数函数对数对数的性质积、商、幂与根的对数对数恒等式和不等式常用对数自然对数对数函数的图像和性质根据考试大纲的要求,结合2009年高考的命题情况,我们可以预测2010年集合部分在选择、填空和解答题中都有涉及,高考命题热点有以下两个方面:一是集合的运算、集合的有关述语和符号、集合的简单应用等作基础性的考查,题型多以选择、填空题的形式出现;二是以函数、方程、三角、不等式等知识为载体,以集合的语言和符号为表现形式,结合简易逻辑知识考查学生的数学思想、数学方法和数学能力,题型常以解答题的形式出现.函数是高考数学的重点内容之一,函数的观点和思想方法贯穿整个高中数学的全过程,包括解决几何问题.在近几年的高考试卷中,选择题、填空题、解答题三种题型中每年都有函数试题,而且常考常新.以基本函数为模型的应用题和综合题是高考命题的新趋势.考试热点:①考查函数的表示法、定义域、值域、单调性、奇偶性、反函数和函数的图象.②函数与方程、不等式、数列是相互关联的概念,通过对实际问题的抽象分析,建立相应的函数模型并用来解决问题,是考试的热点.③考查运用函数的思想来观察问题、分析问题和解决问题,渗透数形结合和分类讨论的基本数学思想.第1课时函数及其表示一、映射1.映射:设A、B是两个集合,如果按照某种对应关系f,对于集合A中的元素,在集合B中都有元素和它对应,这样的对应叫做到的映射,记作.2.象与原象:如果f:A→B是一个A到B的映射,那么和A中的元素a对应的叫做象,叫做原象。二、函数1.定义:设A、B是,f:A→B是从A到B的一个映射,则映射f:A→B叫做A到B的,记基础过关高考导航选校网.函数的三要素为、、,两个函数当且仅当分别相同时,二者才能称为同一函数。3.函数的表示法有、、。例1.下列各组函数中,表示同一函数的是().A.1,xyyxB.211,1yxxyxC.33,yxyxD.2||,()yxyx解:变式训练1:下列函数中,与函数y=x相同的函数是()A.y=xx2x)2C.y=lg10xD.y=x2log2解:例2.给出下列两个条件:(1)f(x+1)=x+2x为二次函数且f(0)=3,f(x+2)-f(x)=4x+2.试分别求出f(x)的解析式解:(1)令t=x+1,∴t≥1,x=(t-1)2则f(t)=(t-1)2+2(t-1)=t2-1,即f(x)=x2-1,x∈[1,(2)设f(x)=ax2∴f(x+2)=a(x+2)2+b(x+则f(x+2)-∴22444baa,11ba,又f(0)=3c=3,∴f(x)=x2-变式训练2:(1)已知f(12x)=lgx,求f(x);(2)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x);(3)已知f(x)满足2f(x)+f(x1)=3x,求f(x)解:(1)令x2+1=t,则x=12t,∴f(t)=lg12t,∴f(x)=lg12x(2)设f(x)=ax+b,则3f(x+1)-2f(x-1)=3ax+3a+3b-2ax+2a-2b=ax+b+5a=2x+17,∴a=2,b=7,故f(x)(3)2f(x)+f(x1)=3x,把①中的x换成x1,得2f(x1)+f(x)=x3典型例题选校网专业大全历年分数线上万张大学图片大学视频院校库①×2-②得3f(x)=6x-x3,∴f(x)=2x-x1.例3.等腰梯形ABCD的两底分别为AD=2a,BC=a,∠BAD=45°,作直线MN⊥AD交AD于M,交折线ABCD于N,记AM=x,试将梯形ABCD位于直线MN左侧的面积y表示为x的函数,并写出函数的定义域.解:作BH⊥AD,H为垂足,CG⊥AD,G为垂足,依题意,则有AH=2a,AG=23(1)当M位于点H的左侧时,N∈AB,由于AM=x,△AMN=21x2(0≤x≤2a)(2)当M位于HG之间时,由于AM=x,2a,BN=x-2a∴y=SAMNB=2·21a[x+(x-2a)]=21ax-).232(82axaa(3)当M位于点G的右侧时,由于AM=x,MN=MD=2a-∴y=SABCD-S△MDN=).223(45221)44(2143)2(21)2(2·21222222axaaaxxxaxaaxaaaa综上:y=aaxaaxxaaxaaxaxx2,2345221.23,28212,0212222变式训练3:已知函数f(x)=.0,1,0,1,0,2xxxxx(1)画出函数的图象;(2)求f(1),f(-1),f)1(f的值.解:(1)分别作出f(x)在x>0,x=0,x<0段上的图象,如图所示,作法略.(2)f(1)=12=1,f(-1)=-,111f)1(f=f(1)=1.1.了解映射的概念,应紧扣定义,抓住任意性和唯一性.2.函数的解析式常用求法有:待定系数法、换元法(或凑配法)、解方程组法.使用换元法时,要注意研究定义域的变化.3.在简单实际问题中建立函数式,首先要选定变量,然后寻找等量关系,求得函数的解析式,还要注意定义域.若函数在定义域的不同子集上的对应法则不同,可用分段函数来表示.第2课时函数的定义域和值域小结归纳选校网专业大全历年分数线上万张大学图片大学视频院校库一、定义域:1.函数的定义域就是使函数式的集合.2.常见的三种题型确定定义域:①已知函数的解析式,就是.②复合函数f[g(x)]的有关定义域,就要保证内函数g(x)的域是外函数f(x)的域.③实际应用问题的定义域,就是要使得有意义的自变量的取值集合.二、值域:1.函数y=f(x)中,与自变量x的值的集合.2.常见函数的值域求法,就是优先考虑,取决于,常用的方法有:①观察法;②配方法;③反函数法;④不等式法;⑤单调性法;⑥数形法;⑦判别式法;⑧有界性法;⑨换元法(又分为法和法)例如:①形如y=221x,可采用法;②y=)32(2312xxx,可采用法或法;③y=a[f(x)]2+bf(x)+c,可采用法;④y=x-x1,可采用法;⑤y=x-21x,可采用法;⑥y=xxcos2sin可采用法等.例1.求下列函数的定义域:(1)y=xxx||)1(0(2)y=232531xx;1·1xx解:(1)由题意得,0||01xxx化简得,||1xxx即.01xx故函数的定义域为{x|x<0且x≠-1}(2)由题意可得,050322xx解得.553xx故函数的定义域为{x|-5≤x≤5且x≠±3(3)要使函数有意义,必须有,0101xx即,11xx∴x≥1,故函数的定义域为[1,+∞)[来源:学_科_网]变式训练1:求下列函数的定义域:(1)y=212)2lg(xxx+(x-1)0;(2)y=)34lg(2xx+(5x-4)0;(3)y=225x+lgcosx;解:(1)由01,012022xxxx得1,432xxx所以-3<x<2且x≠1.基础过关典型例题选校网专业大全历年分数线上万张大学图片大学视频院校库故所求函数的定义域为(-3,1)(2)由045,134034xxx得54,2143xxx函数的定义域为).,54()54,21(21,43[来源:Z#xx#k.Com](3)由0cos0252xx,得,)(222255Zkkxkx借助于数轴,解这个不等式组,得函数的定义域为.5,23)2,2(23,5例2.设函数y=f(x)的定义域为[0,1],求下列函数的定义域(1)y=f(3x);(2)y=f(x1);(3)y=f()31()31xfx;(4)y=f(x+a)+f(x-a).解:(1)0≤3x≤1,故0≤x≤31的定义域为[0,31](2)仿(1)解得定义域为[1,(3)由条件,y的定义域是f)31(x与)31(x定义域的交集列出不等式组,32313431323113101310xxxxx故y=f)31()31(xfx的定义域为32,31.(4)由条件得,111010axaaxaaxax讨论:①当,11,1aaaa即0≤a≤21时,定义域为[a,1-a]②当,1,aaaa即-21≤a≤0时,定义域为[-a,1+a]综上所述:当0≤a≤21时,定义域为[a,1-a];当-21≤a≤0
本文标题:高中数学专题讲解之函数与基本初等函数
链接地址:https://www.777doc.com/doc-2404012 .html