您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 新题库--第二章第08节对数与对数运算
1对数与对数运算题型1对数及对数运算1.把下列指数式写成对数式:(1)32=8;(2)52=32;(3)12=21;(4)312731。解:(1)2log8=3(2)2log32=5(3)2log21=-1(4)27log31=-312.把下列对数式写成指数式:(1)416log21;(2)2log128=7;(3)lg0.01=-2;(4)ln10=2.303。解:(1)16)21(4(2)72=128;(3)210=0.01;(4)303.2e=103.用logax,logay,logaz,loga(x+y),loga(x-y)表示下列各式:(1)logazyx23;(2)loga(x423yz);(3)loga(xy21z32);(4)22ayxxylog;(5)y)yxyx(loga;(6)3a]y)x(xy[log.解:(1)logay2logxlog31z)logy(2logxlog31zylogxlogzyxaaaaa2a3a23zloga;(2)loga(x·423yz))ylogz(log41xlogyzlogxlog2a3aa423aazlog43ylog21xlogzlog43ylog42xlogaaaaaa;(3)loga(xy21z32)zlog32ylog21xlogzlogylogxlogaaa32a21aa;(4)y)y)(x(xlogylogxlog)y(xlogxylogyxxylogaaa22aa22ay)-(xlogy)(xlogylogxlogaaaa;(5)ylogy)(xlogy)(xlogylogyxyxlogy)yxyx(logaaaaaa;(6)y)(x3logx3logy3logy)](xlogxlogy3[log]y)x(xy[logaaaaaa3a。4.计算:(1)2log510+log50.25;(2)2log525+3log264;(3)log2(log216)解:(1)2log510+log50.25=log5102+log50.25=log5(100×0.25)=log525=2.2(2)2log525+3log264=2log552+3log226=2×2+3×6=22.(3)log2(log216)=log2(log224)=log24=log222=2.5.不查表求值:(1)42log2112log487log222.(2))223223(log2.解:(1)原式3log217log21)327(log21)23(log237log212222242212log213log212log217log212log23log2log22222222.方法二:原式2121log4248127log22.(2)原式]1212[log])12()12([log22223)2(log)22log322.方法二:原式22322326(log21)223223(log2122238log212.6.不查表求值:(1)lg14-2lg37+lg7-lg18(2)2.1lg10lg38lg27lg(3)2(lg2)lg2lg50lg25;(4)3948(log2log2)(log3log3)新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆解:(1)lg14-2lg37+lg7-lg18=lg(2×7)-2(lg7-lg3)+lg7-lg(23×2)=lg2+lg7-2lg7+2lg3+lg7-2lg3-lg2=0奎屯王新敞新疆方法二:lg14-2lg37+lg7-lg18=lg14-lg2)37(+lg7-lg18=lg01lg18)37(7142奎屯王新敞新疆评述:此题体现了对数运算性质的灵活运用,运算性质的逆用常被学生所忽视.1023lg)10lg(32lg)3lg(2.1lg10lg38lg27lg)2(22132132312lg23lg)12lg23(lg23奎屯王新敞新疆(3)原式22(lg2)(1lg5)lg2lg5(lg2lg51)lg22lg5(11)lg22lg52(lg2lg5)2新疆源头学子小屋特级教师王新敞@126.comwxckt@126.com王新敞特级教师源头学子小屋新疆(4)原式lg2lg2lg3lg3lg2lg2lg3lg3()()()()lg3lg9lg4lg8lg32lg32lg23lg23lg25lg352lg36lg24。7.求53log219的值.解:25353)3(3)3(3999225log5log25log215log213333.8.求值:log6[log4(log381)].3解:原式=log6[log4(log33)4]=log6(log44)=log61=0.9.用xalog,yalog,zalog表示下列各式:zxya(1)log32log)2(zyxa解:(1)zxyalog=alog(xy)-alogz=alogx+alogy-alogz.(2)32logzyxa=alog(2x3log)zya=alog2x+alog3logzya=2alogx+zyaalog31log21.10.计算:⑴27log9;⑵81log43;⑶32log32;⑷625log345;(5)2log(2log16);(6)3log12.05;(7)4219432log2log3log。解:⑴设x27log9,则,279x3233x,∴23x;解法二:239log3log27log239399;⑵设x81log43,则8134x,4433x,∴16x;解法二:16)3(log81log1643344;⑶令x32log32=13232log,∴13232x,∴1x;解法二:32log32=132log132;⑷令x625log345,∴625534x,43455x,∴3x;解法二:3)5(log625log334553434;(5)2log(2log16)=2log(2log42)=2log4=2log22=2;(6)原式=15315555531log3log52.0;(7)原式=2345412log452log213log21232。11.计算下列各式:(1)log12.5-lg85+lg0.5(2)2lg3.0lg211000lg8lg27lg解:(1)原式21lg210lg2100lg43=lg100-lg23-lg10+lg24+lg1-lg2=lg102-3lg2-1+4lg2-lg2=2-1=1.(2)原式3)12lg23(lg21)12lg23(lg232lg)10lg3(lg2110lg232lg33lg23.412.化简27lg81lg3lg27lg539lg523lg解:原式491491lg3lg3lg3lg3(1)lg311510251024lg33lg3(43)lg35.方法二:原式5113lg3lg2781lg)32793lg(51121532152.题型2对数运算的综合问题13.(1)已知2log3=a,3log7=b,用a,b表示42log56;(2)已知18log9=a,b18=5,用a,b表示36log45。解:(1)∵2log3=a,则2log13a,又∵3log7=b,∴1312log7log2log37log42log56log56log33333342babab。(2)∵18log9=a,∴a2log1218log1818,∴18log2=1a,∵b18=5,∴18log5=b,∴aba22log15log9log36log45log45log181818181836。14.如果log8a+log4b2=5,log8b+logaa2=7,求log2(ab)的值。解:∵log8a+log4b2=5,log8b+logaa2=7,∴(logaa+log8b)+(log4b2+log4a2)=12,∴log8(ab)+log4(ab)2=12,∴log8(ab)+2log4(ab)=12,∴124log(ab)log28log(ab)log2222,∴31log2(ab)+log2(ab)=12,∴34log2(ab)=12,∴log2(ab)=12×43=9。15.已知3a=5b=A,且2b1a1,求A的值.解:∵3a=5b=A,∴a=log3A,b=log5A,∴5logb13,loga1AA,∵2b1a1,∴logA3+logA5=2,∴logA3×5=2,∴A2=15,∴A=±15,又A0,∴A=15.16.如果log8a+log4b2=5,log8b+logaa2=7,求log2(ab)的值.解:∵log8a+log4b2=5,log8b+logaa2=7,∴(logaa+log8b)+(log4b2+log4a2)=12,∴log8(ab)+log4(ab)2=12,∴log8(ab)+2log4(ab)=12,∴124log(ab)log28log(ab)log2222,5∴31log2(ab)+log2(ab)=12,∴34log2(ab)=12,∴log2(ab)=12×43=9.17.(1)已知log147=a,log145=b,求log3528.(2)已知log52=a,求2log510+log50.5的值;(3)已知log312=a,试用a表示log324.解:(1)log3528=log35(4×7)=log3522+log357=2log352+log357=2log35714+log357=2log3514-2log357+log357=2log3514-log357=baa27log5log7log275log7log235log7log35log14log2141414141414141414.(2)2log510+log50.5=2log5(5×2)+log521=2(log55+log52)+log52-1=2+2log52-log52=2+log52=2+a.(3)∵log312=log33×22=log33+log322=1+2log32,由log312=a得1+2log32=a,∴log32=21a,又log324=log3(3×23)=log33+log323=1+3log32=1+3213a21a.18.若)2(21lglgbagba,求ba4log之值。解:)2lg(2lglgbaba,2)2lg(lgbaab,054,)2(222abbabaab,4,1,295bababa或即.1,02,1,0,0babababa故则若舍去.1log,44baba.19.设x、y、z∈R+,且3x=4y=6z。(1)求证:yxz2111;(2)比较3x,4y,6z的大小。解:(1)设3x=4y6z=k(k0),∵x
本文标题:新题库--第二章第08节对数与对数运算
链接地址:https://www.777doc.com/doc-2406986 .html