您好,欢迎访问三七文档
四队中学教案纸(备课人:李秀英学科:物理)备课时间4.3教学课题生活中的圆周运动教时计划2教学课时2教学目标1.知道如果一个力或几个力的合力的效果是使物体产生向心加速度,它就是圆周运动的物体所受的向心力.会在具体问题中分析向心力的来源。2.能理解运用匀速圆周运动的规律分析和处理生产和生活中的具体实例。3.知道向心力和向心加速度的公式也适用于变速圆周运动,会求变速圆周运动中物体在特殊点的向心力和向心加速度。重点难点教学重点:1.理解向心力是一种效果力;在具体问题中能找到是谁提供向心力的,并结合牛顿运动定律求解有关问题。教学难点:1.具体问题中向心力的来源;关于对临界问题的讨论和分析;对变速圆周运动的理解和处理。教学过程(一)新课导入复习提问:请同学们回顾并叙述出对于圆周运动你已经理解和掌握了哪些基本知识?(用线速度、角速度、转速和周期等来描述做圆周运动物体的运动快慢;知道了圆周运动一定是变速运动,一定具有加速度;掌握了对于圆周运动的有关问题还必须通过运用牛顿第二定律去认真分析和处理。)(二)新课教学1、铁路的弯道6.8—1并提出问题:火车受几个力作用?这几个力的关系如何?火车受到4个力的作用,各为两对平衡力,即合外力为零。其中重力和支持力的合力为零,牵引力和摩擦力的合力为零,那火车转弯时情况会有何不同呢?提出问题:(1)转弯与直线前进有何不同?(2)画出受力示意图,并结合运动情况分析各力的关系?(转弯时火车的速度方向在不断变化,故其一定有加速度,其合外力一定不为零。)转弯时合外力不为零,即需要提供向心力,而平直路前行不需要,那么火车转弯时是如何获得向心力的?进一步受力分析得:需增加的一个向心力(效果力),由铁轨外轨的轮缘和铁轨之间互相挤压而产生的弹力提供。问题:挤压的后果会怎样?(由于火车质量、速度比较大,故所需向心力也很大。这样的话,轮缘和铁轨之间的挤压作用力将很大,导致的后果是铁轨容易损坏,轨缘也容易损坏。)那么应该如何解决这一实际问题,结合学过的知识加以讨论,提出可行的解决方案,并画出受力图,加以定性说明。交流与讨论:学生发挥自己的想象能力,结合知识点设计方案,结合受力图发表自己的见解……如图6.8—l所示:(火车受的重力和支持力的合力提供向心力,对内外轨都无挤压,这样就达到了保护铁轨的目的。)请同学们运用刚才的分析进一步讨论:实际的铁路上为什么转弯处的半径和火车运行速度有条件限制?2、拱形桥问题:质量为m的汽车在拱形桥上以速度v行驶,若桥面的圆弧半径为只R,试画出受力分析图,分析汽车通过桥的最高点时对桥的压力?通过分析,你可以得出什么结论?在最高点,对汽车进行受力分析,确定向心力的来源;由牛顿第二定律列出方程求出汽车受到的支持力:由牛顿第三定律求出桥面受到的压力:F’N=G—mv2/r可见,汽车对桥的压力F’N小于汽车的重力G,并且压力随汽车速度的增大而减小。请同学们进一步考虑当汽车对桥的压力刚好减为零时,汽车的速度有多大。当汽车的速度大于这个速度时,会发生什么现象?(把F’N=0代人上式可得,此时汽车的速度为gRv,当汽车的速度大于这个速度时,就会发生汽车飞出去的现象。这种现象我们在电影里看到过。)下面再一起共同分析汽车通过凹形桥最低点时,汽车对桥的压力比汽车的重力大些还是小些?(汽车通过凹形桥最低点时,汽车对桥的压力比汽车的重力大。)如果汽车不在拱形桥的最高点或最低点,前面的结论还是否能用?如果不能直接运用,又如何来研究这一问题呢?(前面的结论能直接运用,不过此时物体的向心加速度不等于物体的实际加速度,即要用上一节研究变速圆周运动的方法来处理。)课堂训练例1:一辆质量m=2.0t的小轿车,驶过半径R=90m的一段圆弧形桥面,重力加速度g=10m/s2.求:(1)若桥面为凹形,汽车以20m/s的速度通过桥面最低点时,对桥面压力是多大?(2)若桥面为凸形,汽车以l0m/s的速度通过桥面最高点时,对桥面压力是多大?(3)汽车以多大速度通过凸形桥面顶点时,对桥面刚好没有压力?解:(1)汽车通过凹形桥面最低点时,在水平方向受到牵引力F和阻力f,在竖直方向受到桥面向上的支持力N1和向下的重力G=mg,如图6.8—2所示:圆强形轨道的圆心在汽车上方,支持力Nl与重力G=mg的合力为N1—mg,这个合力就是汽车通过桥面最低点时的向心力,即F向=N1—mg。由向心力公式有:N1—mg=mv2/R3、航天器中的失重现象从刚才研究的一道例题可以看出,当汽车通过拱形桥凸形桥面顶点时,如果车速达到一定大小,则可使汽车对桥面的压力为零,如果我们把地球想象为特大的“拱形桥”,则情形如何呢?会不会出现这样的情况;速度达到一定程度时,地面对车的支持力是零?这时驾驶员与座椅之间的压力是多少?驾驶员躯体各部分之间的压力是多少?他这时可能有什么感觉?假设宇宙飞船质量为M,它在地球表面附近绕地球傲匀逮圆周运动,其轨道半径近似等于地球半径R,航天员质量为m,宇宙飞船和航天员受到的地球引力近似等于他们在地面上的重力,试求座舱对宇航员的支持力,此时飞船的速度多大?通过求解,你可以得出什么结论?(运用牛顿第二定律可解得:宇宙飞船的速度为Rg,再对宇航员进行分析可得,此时座椅对宇航员的支持力为零,即航天员处于失重状态。)4、离心运动做圆周运动的物体一旦失去向心力的作用,它会怎样运动呢?如果物体受的合力不足以提供向心力,它会怎样运动呢?发表你的见解并说明原因。(做圆周运动的物体一旦失去向心力的作用,它会沿切线飞出去,如体育中的“链球”运动,运动员手一放后,“链球”马上飞了出去。)如果向心力突然消失,物体由于惯性,会沿切线方向飞出去。如果物体受的合力不足以提供向心力,物体虽不能沿切线方向飞出去.但会逐渐远离圆心.这两种运动都叫做离心运动。讨论与思考:请同学们结合生活实际,举出物体做离心运动的例子,在这些例子中,离心运动是有益的还是有害的?你能说出这些例子中离心运动是怎样发生的吗?板书设计5.8生活中的圆周运动1、铁路的弯道(1)讨论向心力的来源:(2)外轨高于内轨时重力与支持力的合力是使火车转弯的向心力(3)讨论:为什么转弯处的半径和火车运行速度有条件限制?2、拱形桥(1)思考:汽车过拱形桥时,对桥面的压力与重力谁大?(2)圆周运动中的超重。失重情况。3、航天器中的失重现象4、离心运动(1)离心现象的分析与讨论。(2)离心运动的应用和防止。课堂练习1.一辆卡车在丘陵地匀速行驶,地形如图所示,由于轮胎太旧,途中爆胎,爆胎可能性最大的地段应是()A.a处B.b处C.c处D.d处2.一汽车通过拱形桥顶点时速度为10m/s,车对桥顶的压力为车重的43,如果要使汽车在桥顶对桥面没有压力,车速至少为()A.15m/sB.20m/sC.25m/sD.30m/s3.在水平铁路转弯处,往往使外轨略高于内轨,这是为了()A.减轻火车轮子挤压外轨B.减轻火车轮子挤压内轨C.使火车车身倾斜,利用重力和支持力的合力提供转弯所需向心力D.限制火车向外脱轨4.铁路转弯处的圆弧半径为R,内侧和外侧的高度差为h,L为两轨间的距离,且Lh,如果列车转弯速率大于LRgh/,则()A.外侧铁轨与轮缘间产生挤压B.铁轨与轮缘间无挤压C.内侧铁轨与轮缘间产生挤压D.内外铁轨与轮缘间均有挤压5.有一种大型游戏器械,它是一个圆筒形大容器,筒壁竖直,游客进入容器后靠筒壁站立,当圆筒开始转动,转速加快到一定程度时,突然地板塌落,游客发现自己没有落下去,这是因为()A.游客受到的筒壁的作用力垂直于筒壁B.游客处于失重状态C.游客受到的摩擦力等于重力D.游客随着转速的增大有沿壁向上滑动的趋势6.质量为m的小球,用一条绳子系在竖直平面内做圆周运动,小球到达最高点时的速度为v,到达最低点时的速变为24vgR,则两位置处绳子所受的张力之差是()A.6mgB.5mgC.4mgD.2mg7.汽车在水平地面上转弯时,地面的摩擦力达到最大,当汽车速率增为原来的2倍时,则汽车拐弯的半径必须()A.减为原来的1/2倍B.减为原来的1/4倍C.增为原来的2倍D.增为原来的4倍8.杂技演员在表演水流星节目时,盛水的杯子在竖直平面内做圆周运动,当杯子到最高点时,里面水也不流出来,这是因为()A.水处于失重状态,不受重力的作用了B.水受平衡力作用,合力为0C.水受的合力提供向心力,使水做圆周运动D.杯子特殊,杯底对水有吸力9.下列说法中,正确的是()A.物体做离心运动时,将离圆心越来越远B.物体做离心运动时,其运动轨迹一定是直线C.做离心运动的物体,一定不受到外力的作用D.做匀速圆周运动的物体,因受合力大小改变而不做圆周运动时,将做离心运动10.乘坐游乐园的翻滚过山车时,质量为m的人随车在竖直平面内旋转,下列说法正确的是()A.车在最高点时人处于倒坐状态,全靠保险带拉住,没有保险带,人就会掉下来B.人在最高点时对座仍可能产生压力,但压力一定小于mgC.人在最低点时对座位的压力等于mgD.人在最低点时对座位的压力大于mg11.关于离心运动,下列说法中正确的是()A.物体一直不受外力的作用时,可能做离心运动B.做匀速圆周运动的物体,在外界提供的向心力突然变大时做离心运动C.做匀速圆周运动的物体,只要向心力的数值发生变化就将做离心运动D.做匀速圆周运动的物体,当外界提供的向心力突然消失或数值变小时将做离心运动12.把盛水的水桶拴在长为L的绳子一端,使水桶在竖直平面做圆周运动,要使水在水桶转到最高点时不从水桶里流出来,这时水桶的线速度至少应该是().2AgL./2BgL.CgL.2DgL课外作业问题与练习1,2,3教学反思这节课内容就两个知识点:一是向心力公式在实际情景中的具体应用——水平面和竖直面内的圆周运动;二是离心运动。离心运动是新的知识点。学生第一次接触具体情境问题,依据大纲和教材,我的理解就是要让学生先在一个比较浅显的层面上来掌握分析、解决问题的思路和方法,为以后解决一些综合应用做好铺垫,不应过深的处理或拓展。
本文标题:教案(205)
链接地址:https://www.777doc.com/doc-2420842 .html