您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 数字信号处理课程设计报告电子版07
吉林建筑工程学院电气与电子信息工程学院《传感器与检测技术》课程设计设计题目:超声波测距系统设计专业班级:信科072学生姓名:刘贺学号:10307202指导教师:王超杨佳设计时间:2010.12.20-2010.12.31教师评语:成绩评阅教师日期一、课程设计目的通过《传感器及检测技术》课程设计,使我掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。二、设计内容及要求(一)设计内容超声波测距系统设计采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。功能:(1)LED数码管显示测量距离,精确到小数点后一位(单位:cm)。(2)测量范围:30cm~200cm,(3)误差<0.5cm。(4)其它。(二)设计要求(1)掌握传感器的工作原理及相应的辅助电路设计方法。(2)独立设计原理图及相应的硬件电路。(3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。三、传感器工作原理(一)基本介绍超声波传感器是利用超声波的特性研制而成的传感器。超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。因此超声波检测广泛应用在工业、国防、生物医学等方面。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。以超声波作为检测手段,必须产生超声波和接收超声波。完成这种功能的装置就是超声波传感器,习惯上称为超声换能器,或者超声探头。超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。构成晶片的材料可以有许多种。晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,使用前必须预先了解它的性能。(二)组成部分超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。小功率超声探头多作探测作用。它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头反射、一个探头接收)等。(三)工作原理超声波发生器内部结构有两个压电晶片和一个共振板。当它的两极外加脉冲信号,其频率等于压电晶片的固有振荡频时,压电晶片将会发生共振,并带动共振板振动,便产生超声波。反之,如果两电极间未外加电压,当共振板接收到超声波时,将压迫压电晶片作振动,将机械能转换为电信号,就成为超声接收波换能器。超声测距大致有以下方法:(1)取输出脉冲的平均值电压,该电压(其幅值基本固定)与距离成正比,测量电压即可测得距离;(2)测量输出脉冲的宽度,即发射超声波与接收超声波的时间间隔t,测距原理如图1所示,距离公式为s=ct/2,其中c为声速。通过测量发射与接受装置之间的距离h,利用直角三角形可求得222/hsd)(。因为s》h,则d=s,d=s=ct/2。本测量电路采用第二种方案。图1测距原理图在空气中,常温下超声波的传播速度是334米/秒,但其传播速度v易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1℃,声速增加约0.6米/秒。声速与温度关系如表2所示。因此在测距精度要求很高的情况下,应通过对温度补偿的方法对传播速度加以校正。已知现场环境温度T目标hdS时,超声波传播速度V的计算公式可近似如下:V=331.5+0.607T这样,只要测得超声波发射和接收回波的时间差t以及现场环境温度T,就可以精确计算出发射点到障碍物之间的距离。表2声速与温度关系表:温度(℃)-30-20-10010203040声速(m/s)313319325332338344350356四、系统框图图3系统框图五、单元电路设计原理(一)LED显示电路与键盘控制电路设计显示器是一个典型的输出设备,而且其应用是极为广泛的,几乎所有的电子产品都要使用显示器,其差别仅在于显示器的结构类型不同而已。最简单最直观的显示器可以使用LED发光二极管,而复杂的教完整的显示器应该是CRT监视器或者屏幕较大的LCD液晶屏。综合课题的实际要求,由于只需显示距障碍物的距离,因此选用LED数码管,通过单片机编程实现显示。动态扫描显示接口是单片机中应用最为广泛的一种显示方式之一。其接口电路是把所有显示器的8个笔划断a—dp同名端连在一起,而每一个显示器的公共极COM是各自独立的受I/O线的控制。CPU向字段输出口送出字型码时,所有超声波接收器超声波发射器放大电路放大电路锁相环检波电路定时器单片机控制显示器显示器接收到相同的字型码,但究竟是哪个显示器亮,则取决于COM端,而这一端是由I/O控制的,所以我们就可以自行决定何时显示哪一位了。而所谓动态扫描就是指我们采用分时的方法,轮流控制各个显示器的COM端,使各个显示器轮流点亮。在轮流点亮过程中,每位显示器的点亮时间是极为短暂的(约1ms),但由于人的视觉暂留现象及发光二极管的余辉效应,尽管实际上各位显示器并非人同时点亮,但只是扫描的速度足够快,给人的印象就是一组稳定的显示数据,不会有闪烁感。采用静态扫描方式控制点亮LED数码管无位选信号,各数码管是同时点亮的,每个数码管显示数码的笔划信息也分路同时送给,其原理比较简单。静态扫描显示编程容易,显示比较清晰,亮度一般较高,但要求占用很多I/O接线口和增用不少硬件芯片,成本较高。因此,我采用动态扫描。设计的显示电路采用4位一体八段共阴极数码管显示,段码直接由单片机的P0口来驱动,因为P0口的内部无上拉电阻,需在外部接上拉电阻;位码则通过4个NPN型三极管来驱动,同时接单片机P2口。显示电路如图4所示。PNPPNPPNPPNPabfcgdeabcdefgdpdp7642191053DS18LEDAabfcgdeabcdefgdpdp7642191053DS28LEDAabfcgdeabcdefgdpdp7642191053DS38LEDAabfcgdeabcdefgdpdp7642191053DS48LEDAGND1KR?Res2图4显示电路在外围的键盘控制电路中,设置了四个独立按键,分别与单片机的P3.4~P3.7相连,当按下S1时,启动超声波发射,开始测距;当按下S2时,停止发射超声波,即停止测距;S3为报警开关,当测量到距离过近时,蜂鸣器电路发出警告,此时按下S3键,即可停止报警,S4为预留出来的按键,当需要的时候可以实行编程控制。电路设计如图5所示。S1S2S3S4VCC图5键盘控制电路(二)超声波发射电路设计超声波的发射和接收是由超声波换能器来完成的,也就是我们俗称的探头。超声波的发射与接收可采用一体式的或独立式的,但是一体式的盲区问题比较严重,所以本次设计选择发射和接收探头分开的,具体将采用超声波发射换能器TCT40-16BT和超声波接收换能器TCT40-16BR。命名规则:型号:TCT40-16BT或(R)类别:TC—压电陶瓷超声波传感器;T—通用性;T—发射/R—接收外径:-16代表Φ16mm外壳材料:铝外壳颜色:银色具体参数:中心频率:40.0kHz±1.0kHz输出电压:≥115dB接收灵敏度:≥-65dB静电容量:2000pF±20%指向角:80°工作温度:-20~+70℃超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等,而以压电式最为常用。压电型超声波探头常用的材料是压电晶体和压电陶瓷,它是利用压电材料的压电效应来工作的:逆压电效应将高频电振动转化成高频机械振动,从而产生超声波,可作为发射探头;而利用正压电效应,将超声振动波转化为电信号,可作为接收头。超声波发射电路,是为了让超声波发射换能器TCT40-16BT能向外界发出40kHz左右的方波脉冲信号。40kHz左右的方波脉冲信号的产生通常有两种方法:采用硬件如由555振荡产生或软件如单片机软件编程输出,本系统采用后者。编程由单片机P1.0端口输出40kHz左右的方波脉冲信号,由于单片机端口输出功率不够,40kHz方波脉冲信号分成两路,一路经一级反相器后送到超声波换能器的一个电极;另一路经两级反相器后送到超声波换能器的另一个电极。用这种推挽形式将方波信号加到超声波换能器的两端,实际上构成了一个桥式电路,输入与输出的相位图如图3-4所示,再加上输出端上拉电阻R3,R4,一方面可以提高反向器MC14069UB输出高电平的驱动能力,另一方面可以增加超声换能器的阻尼效果,缩短其自由振荡的时间。发射电路如图6所示。图6超声波发射电路(三)超声波接收电路设计上述TCT40-16BT发射的在空气中传播,遇到障碍物就会返回,超声波接收部分是为了将反射波(回波)顺利接收到超声波接收换能器TCT40-16BR进行转换变成电信号,并对此电信号进行放大、滤波、整形等处理后,这里用索尼公司生产的集成芯片CX20106,得到一个负脉冲送给单片机的P3.2(INT0)引脚,以产生一个中断。CX20l06A是日本索尼公司生产的红外接收芯片,也适用于超声波接收。其采用单列8脚直插式,超小型封装。+5V供电。以下是CX20l06A的引脚注释:1脚:超声波信号输入端,该脚的输入阻抗约为40kΩ。2脚:该脚与GND之间连接RC串联网络,它们是负反馈串联网络的一个组成部分,改变它们的数值能改变前置放大器的增益和频率特性。增大电阻R或减小C,将使负反馈量增大,放大倍数下降,反之则放大倍数增大。但C的改变会影响到频率特性,一般在实际使用中不必改动,推荐选用参数为R=4.7Ω,C=3.3μF。3脚:该脚与GND之间连接检波电容,电容量大为平均值检波,瞬间相应灵敏度低;若容量小,则为峰值检波,瞬间相应灵敏度高,但检波输出的脉冲宽度变动大,易造成误动作,推荐参数为3.3μF。4脚:接地端。5脚:该脚与电源端VCC接入一个电阻,用以设置带通滤波器的中心频率fn,阻值越大,中心频率越低。例如,取R=200kΩ时,f0≈42kHz,若取R=220kΩ,则中心频率f0≈38kHz。6脚:该脚与GND之间接入一个积分电容,标准值为330pF,如果该电容取得太大,会使探测距离变短。7脚:遥控命令输出端,它是集电极开路的输出方式,因此该引脚必须接上一个上拉电阻到电源端,该电阻推荐阻值为22kΩ,没有接收信号时该端输出为高电平,有信号时则会下降。8脚:电源正极,4.5V~5V。接收部分的电路如图7所示。图7超声波接收电路可以看到,集成芯片CX20106在接收部分电路中起了很大的作用。CX20106是一款应用广泛的红外线检波接收的专用芯片,也适用于超声波,其具有功能强、性能优越、外围接口简单、成本低等优点,由于红外遥控常用的载波频率38kHz与测距的超声波频率40kHz比较接近,而且CX20106内部设置的滤波器中心频率f0可由其5脚外接电阻调节,阻值越大中心频率越低,范围为30~60kHz。故本次设计用它来做接收电路。CX20106内部由前置放大器、限幅放大器、带通滤波器、检波器、积分器及整形电路构成。工作过程如下:接收的回波信号先经过前置放大器和限幅放大器,将信号调整到合适幅值的矩形脉冲,由滤波器进行频率选择,滤除干扰信号,再经整形,送给输出端7脚。当接收到与CX20106滤波器中心频率相符的回波信号时,其输出端7脚就输出低电平,而输出端7脚直接接到SST89E564的INT0引脚上,以触发中断。若频率有一些误差,可调节芯片引脚5的外接电阻R7,将滤波器的中心频率设置在40kHz,就可达到理想的效果。(四)串口通信与蜂鸣器电路设计由于MCS—
本文标题:数字信号处理课程设计报告电子版07
链接地址:https://www.777doc.com/doc-2424943 .html