您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 数学专题1集合与简易逻辑
1高考数学总复习专题1集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.2三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:;;;,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x∈R)点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为yy是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是xx是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是xx是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.3(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈Ax∈B,则AB(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φA显然:任何一个集合都是自身的子集,即AA.(II)集合的相等:若AB且BA,则A=B.(III)真子集定义:若AB且A≠B;则AB(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,AI,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且xA}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且xB;x∈B且xA;x∈A且x∈B.(III)基本运算性质4①“交”的运算性质A∩B=A;A∩φ=φ;A∩B=B∩A;A∩A=φ;(A∩B)∩C=C∩(A∩B)=A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B=B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)=A∪B∪C③交.并混合运算性质A∪(B∩C)=(A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A(IV)重要性质①A∩B=AAB;A∪B=BAB;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x|x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩B;B∩A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q”p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q5逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题便是的真伪无必然联系.2.充分条件与必要条件(I)定义:若pq则说p是q的充分条件,q是p的必要条件;若pq则说p是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若pq则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则pQ;(3)设,则MN;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=6={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知MN,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=BBA即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0a=1或a=7当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4}A.(III)注意到BA,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)0a-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.7(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+30,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若AB,试求实数a的取值范围.解:A={x|1x3}=(1,3)注意AB,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x,x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤gmin(x)a≤-1②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤fmin(x)a≥f(x)恒成立a≥fmax(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m0),若是q的必要而不充分条件,求实数m的取值范围.8分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x-2或x10;q:x1-m或x1+m(m0).令A={x|x-2或x10},B={x|x1-m或x1+m(m0)},则由是q的必要而不充
本文标题:数学专题1集合与简易逻辑
链接地址:https://www.777doc.com/doc-2426263 .html