您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 数学课堂教学中如何培养学生的思维品质
数学课堂教学中如何培养学生的思维品质论文摘要:数学是训练学生思维能力的一门主要基础学科,改革数学教学,其着眼点应该放在引导学生通过自己的思维活动掌握学习方法上。因此,落实素质教育,培养思维能力是核心,而课堂是思维训练的主阵地,教师在教学中,应以思维为核心,以训练为主线,遵循学生的心理性和认识规律,采用灵活多样的教学方法,适时地发展学生的思维,促使学生的思维由未知向已知转化,由形象思维向抽象思维转化,由单一集中思维赂发散思维转化,增强思维品质。关键词:思维品质数学教学培养方法思维品质,是指个体思维活动特殊性的外部表现,实质是人的思维的个性特征。它包括思维的严密性、灵活性、深刻性、广阔性、批判性和敏捷性等品质。思维品质反映了每个个体智力或思维水平的差异。人们在工作、学习、生活中每逢遇到问题,总要“想一想”,这种“想”,就是思维。它是通过分析、综合、概括、抽象、比较、具体化和系统化等一系列过程,对感性材料进行加工并转化为理性认识及解决问题的。我们常说的概念、判断和推理是思维的基本形式。无论是学生的学习活动,还是人类的一切发明创造活动,都离不开思维,思维能力是学习能力的核心,培育高品质的思维是我们最重要的学习任务之一。高素质教育,要全面提高学生的素质,应在教学过程中通过各种途径来启迪学生思维,使之善于思考、勤于思考。个人思维能力的发展,既服从于一般的规律性,又反映出个性的差异性,这种个性差异体现在思维的智力特征方面,就是思维的智力品质。这种品质,一方面是解决问题的实践中形成的,另一方面它又直接影响新问题的解决。我们在课堂教学中要加强思维训练的目的:一是要学生学习掌握思维的方法,二是要培养学生良好的思维品质。下面,就数学教学中如何培养学生的思维品质,谈谈自己的一些看法,分为以下六点:一、如何培养思维的敏捷性思维的敏捷性是指思维活动中的速度,它反映了学生智力的敏锐程度。使学生的思维具有敏捷性,就是使学生思考问题的速度快,在转瞬之间能够把应该想到的内容思考完毕,这是一个方面;另一个方面,就是思考问题要做到合情合理。这两个方面是并存的。思考问题速度很快,但不合情理,这样的“快”,其实是浪费时间,因为它没有实际意义;思考问题合乎情理,但缓慢异常,显然,这是思维质量不高的表现。所以,这两个方面全都做到,才可称之为思维敏捷。思维敏捷的人善于适应情况,周密考虑,并能正确的判断和迅速作出结论。例:如图正方形ABCD的边长为a求分别以各边为直径的正方形内画半圆所组成阴影部分的面积。此题如果直接求图形面积时,可视阴影部分为八个全等的弓行组成。但这样计算显然较繁,若仔细观察分析之后可知,该阴影部分分为四个半圆的面积与正方形面积的差。由结果较易得到:S阴影=21π(2a)2×4-a2=(2-1)a2思维的敏捷性意味着思维的效率。为了提高学生的学习效率,就必须逐步培养学生思维的敏捷性。首先,要“求速度”,就是教师安排学生的思维活动,要有时间要求,使学生的思维活动在某种速度上进行。当然,教师提出的速度要求,不能脱离学生的实际,应用学生可能达到的速度要求学生。随着时间的推移,对某项训练内容的速度要求可以逐步提高。这样循序渐进地训练学生,他们思维的敏捷性就会逐步增强。教师要对学生的计算速度提出要求,对所布置的作业更要提出时间要求,同时注意提高学生的心算能力。其次,要学会“设情境”,就是教师运用语言描述或其他形象化手段,把某种情形、某种状况、某种景象表现出来,使学生已置身于某种情境之中,他们已经暂时变成了情境中的某个角色,此时思考问题就必须与该情境的节奏想吻合,不能任意拖延时间。这样,他们思考问题就会是主动的,积极的,因而也是敏捷的。还有就是要把基础知识抓牢,对有关的定理和公式一定要在理解的基础上记住,引导学生掌握科学的运算方法。由此可见,思维的敏捷性的培养,常常要求让学生仔细观察数学问题的表面的、自问的联系,从所得印象中进行积极思考,迅速确定思维方向,找到一条正确的、简捷的、解决问题的途径。二、如何培养思维的深刻性思维深刻性是指思维活动的抽象程度和逻辑水平,深度和难度。它表现在深入思考问题,善于概括、归类,逻辑抽象性强,善于抓住本质和规律,开展系统的理解活动,关善于预见,猜想问题的发展过程。学生思维的深刻性集中地表现在善于全面地、深入地思考问题,能运用逻辑思维方法,照顾到问题有关的所有条件,钻研并抓住问题的实质、正确、简便地解决问题,在形成概念、构成判断、进行推理和论证上,反映出他们的个性差异。具有思维深刻性品质的人,能从别人看来是简单的,甚至不屑一顾的理解中,看出重大的问题,从中揭露出最重要的规律来。与此相反,思维肤浅的人常被一些表面现象所迷惑,看不到问题的本质,不善于深思熟虑,往往凭一知半解就下结论。例如:⊙O的半径是13㎝,弦AB∥CD,AB=24㎝,CD=10㎝,求AB和CD的距离。这是一道“无附图”题,同学们易犯如下错误。错解:同学们易受思维定势的影响,画出如图(1)的图形。过O分别作AB,CD的垂线,分别交CD、AB于E、F,连接OA、OC。在Rt△OCE中:OE=22CEOC=22513=12(㎝)在Rt△OAF中,OF=22AFOA=221213=5(㎝)∴EF=12+5=17(㎝)。因此AB和CD的距离是17㎝分析:这种解法是不完全的,因为它漏掉了另一种情况,如图(2),即AB,CD在圆心O的同侧的情况。这时,EF=12-5=7(㎝)。所以,正确的答案应是17㎝或7㎝。我的思考:圆既是轴对称图形,又是中心对称图形,还具有旋转不变性。圆的这些特点决定了关于圆的某些问题会有多解情况。同学们解题时如果不注意,就容易产生漏解现象。解答这类问题时需要按照一定的标准,分成若干情况,逐一加以讨论,这样可以避免漏解。本题的错误在于两平行弦与圆心的位置不确定造成的。注重培养、发展学生思维的深刻性,有利于学生更系统、牢固地掌握数学知识和技能,有利于学生学得主动、活泼。有鉴于此,我们应该由个性的各自起点,逐步提高思维的深刻性。三、如何培养思维的广阔性思维的广阔性是批在思维过程中善于全面地看问题,能着眼于事物之间的联系,善于从多方面多角度,不依常规地去思考问题,找出问题的本性,它反映思维的宽度、广度。学生由于年龄小,往往把自己的思维过程局限在狭小的范围内。培养思维的广阔性,就要培养学生较全面的思考问题,就要指导学生学会全面理解事物之间的联系,从多方面分析问题,研究问题。数学思维的广阔性表现为思路开阔,既能纵观问题的整体,又能兼顾问题的细节;既能抓住问题的本身,又能兼顾有关的其他问题;善于归纳、总结、分类、形成知识的结构层次。数学思维的广阔性是多层次、多角度的立体型思维,一般说来,必须具备丰富的数学知识和经验,才能形成思维的广阔性。克服思维定势、培养思维的广阔性。定势是由心理操作形成的模式所所引起的心理活动的准备状态,也称心向。学生由于受先前数学经验的影响,使当前的心理活动表现出一定的倾向性,在数学解题过程中总想遵循已掌握的规则系统。思维定势有时会引起负迁移,产生消极影响,表现为思维的呆板性、狭隘性。在定势的妨碍下,学生学习表现为程式化、模式化,缺少应变能力。如:在求值计算题:“已知X-X1=1,求X2+21X的值”中,许多学生习惯先求X的值,再代入求值,致使解题繁杂。就是由于不善于发现已知条件与求值式的联系、与所学的完全平方公式的联系。要克服思维定势这种心理障碍的影响,教学过程中,在培养学生使用“双基”的定势来巩固、掌握数学知识的同时还要培养学生善于打破定势,使学生遇到陌生数学问题时既不落入“套式”,也不束手无策,多方面、多角度地去思考问题,培养思维的广阔性。四、如何培养思维的周密性思维的周密性是指思维活动的深度、逻辑的周到和细密性。往往容易出现的错误在于受思维定势的影响、对概念、性质理解不到位,审题不慎,忽视隐含条件,造成解题错误。思维的周密性是解决问题的基础,在解题过程中,要全面、系统地考虑问题,注意各种条件综合运用,方可实现解题的正确性,所以要从整体的角度观察问题的结构,才能达到解决问题的目的,再用整体化的思想方法可使这道题迎刃而解。下面我举例说明:例1:忽略一元二次方程有实数根的条件已知方程2X2-mX-2m+1=0的两实根的平方和为429,求m的值?错解:由题意,得X1+X2=21m,X1X2=212m所以,X12+X22=(X1+X2)2-2X1X2=(2m)2-2×212m=,429即m2+8m-33=0解得m1=3,m2=-11剖析:由于题目中已明确有实数根,因此必须有△≥0的先决条件。△=(-m)2-4×2×(-2m+1)=m2+16m-8≥0,当m=3时,△>0;当m=-11时,△<0。故正确答案为m=3。如果孤立地去看一个事物,就有可能得出片面的甚至错误的结论;如果把有关事物联系起来去认识,就有可能得出全面、正确的结论。所以,在解题时,指导学生运用“彼此联系”的方法,可以培养学生思维的周密性。五、如何培养思维的灵活性思维的灵活性是指思维活动的灵活程度,思维能迅速、轻易地从一类对象转变到另一类对象的能力,当思维缺乏灵活性时,就表现为思维刻板、僵化或呆滞。它反映了智慧能力的迁移,善于引导学生一题多解,一题多解是培养思维灵活性的有效途径。通过“一题多解”的训练能沟通知识之间的内在联系,提高学生应用所学的基础知识与基本技能解决实际问题的能力,逐步学会举一反三的本领。例:已知3a=4b=5c,求cbacba223的值。一般方法是:设3a=4b=5c=K,则a=3K,b=4K,c=5K。代入所求代数式得:kkkkkk543252433=kk7=71解法2:3a=4b=5c312310212333725462acbacbaaCbacba71223Cbacba解法3:考虑到这个知识点的考查通常以填空或选择出现,所以在第一种解法的基础上,可用特殊值代入求值。即设a=3,b=4,c=5。数学思想和方法是对数学知识的本质反映,也是知识转化为能力的纽带。数学思想的方法是通过思维活动对数学认识结构形式的核心,包括作为知识内容的表象概念、概念体系,也包括掌握相应知识内容所必须具有思维能力。教师在讲授数学知识的同时,更应注重数学思想方法的渗透和培养,把数学思维方法和数学知识、技能融为一体,不断提高学生的思维能力、解题能力及联系实际的能力。重视数学思想的教育,如集合思想、函数思想、方程思想、数形结合思想、化归思想能事学生针对问题抓住本质,并起到举一反三、触类旁通的作用,这样对提高学生的解题能力具有十分重要的意义,也会使学生对数学学习兴趣倍增,事半功倍,达到提高数学素质的目的。我们所说思维的灵活性,也是强调多解和求异。培养学生思维的灵活性是数学教学工作者的一个重要教学环节,它主要表现在使学生能根据事物的变化,运用已有的经验灵活地进行思维,及时地改变原定的方案,不局限于过时或不妥的假设之中,因为客观世界时时处处在发展变化,所以它要求学生用变化、发展的眼光去认识、解决问题,“因地制宜”“量体裁衣”的思维灵活性的表现。在此意义上也可称发散思维,灵活性越大,发散思维越发达,越能多解;多解的类型越完整,迁移过程越显著。我们常说的“举一反三”正是高水平的发散,是对思维灵活性达到一定程度的描述。六、如何培养思维的批判性数学思维的批判性是一种思维品质,它指一个人善于根据客观事实和观点检查自己的思维及其结果的正确性。具有思维批判性人,对自己所遇到的一切人和事,能根据一定的原则做出正确的评价;在处理问题时,能够客观的考虑正反两个方面的意见,既能坚持正确意见,又能放弃错误的想法。在思维活动中善于估计思维材料、检查思维过程,不盲从、中轻信。思维的批判性来自学生对思维活动各环节、各方面的调整、校正,即自我意识。这种自我单调的“调整”“校正”又来自学生对问题本质的认识。只有深刻的认识、周密的思考,才能全面正确地作出判断。因此,思维的批判性是在深刻性基础上发展起来的思维品质。思维的批判性是指在思维活动
本文标题:数学课堂教学中如何培养学生的思维品质
链接地址:https://www.777doc.com/doc-2427772 .html