您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 药学 > 数据统计方法与临床试验方案
1数据统计方法与临床试验方案1.1统计在新药临床试验中的重要作用医药产品的有效性和安全性最终应当由按照GCP原则实施的临床试验来确证。在临床试验的设计和分析中,统计学家起着必不可少的重要作用。GCP、GMP、GLP、GRP和GVP都与统计有关。统计学是一门处理来自群体或个体的大量资料的科学,也是处理资料中变异性的科学和艺术,其目的在于取得可靠的结果。例如,一个医生偶然发现一例患偏头痛病人在喝了橙汁以后感觉有所改善,但这并不是说从这单一个病例观察就可以认为橙汁是治疗偏头痛的有效方法。医生需要统计学资料证明,是否有一组病人在服橙汁后报告症状改善者比采用其他治疗后更多。又如一个每天吸烟50支且嗜酒的人活了95岁并健康良好,但人们不能相信他的习惯能导致健康和长寿。个体对疾病的敏感性变异很大。要研究这些问题,就应当研究不同生活习惯的人群组的发病率和死亡率;也就是说应当进行统计学研究。收集数据、并用统计图表或简单统计量来描述资料的特征称之为描述性统计。但统计学的任务远不止于此,统计学可以通过仔细制订试验计划来提高数据质量;统计推断方法则是从所研究问题的大量数据中得出结论的主要客观手段。应当明白,统计学是在收集、归类、分析和解释大量数据的过程中完成使命的。如果在试验设计阶段不考虑统计原则,所获结果的统计分析不管做的如何精巧都挽救不了一个设计糟糕的临床研究这是一个必须执行的基本原则。表1可能导致临床试验失败的原因可以控制的因素较难控制的因素研究计划要解决的问题目标目标人群研究的顺序性研究人员选择试验设计试验假设随机化盲法试验对象的入选/排除标准受试者基线值变异剂量选择样本大小数据分析方法结果的解释操作性变量入选速度缓慢中途退出受试者的依从性执行错误不严格遵循剂量方案入选了不合格受试者试验过程中合并用药测量的变异编码错误终点指标测定在新药研制过程中,按科学原则进行的临床试验是评价一种新治疗方法的有效性和安全性的惟一可靠的基础。一个临床试验,如果不能恰当地评价试验药物的安全性和/或效性,不能提供关于新药的最好使用方式的充分信息或者提供了误导信息,因而不能对药物的研制、管理、上市和安全有效地使用做出有益贡献,那么这就是一个失败的临床试验。可能导致临床试验失败的原因很多,有些原因是可以控制的,有些则是较难控制的。其中试验设计对于临床试验的成功与否起着极其重要的作用。试验假设(阳性对照)选择不当,随机化及盲法不规范,入选/排除标准过严或过宽,受试者基线值变异大,药物剂量选择不当,终点指标选择及测定时间不妥,样本数太小,数据分析方法不恰当都可能导致临床试验失败(表1)。GCP对生物统计学的要求包括四个方面:统计学设计,统计分析计划,临床和统计学报告,以及数据处理。与临床试验其他专业人员合作的临床试验统计人员的作用和责任是确保在支持新药研制的临床试验中能恰当地应用统计原则。1.2统计学与试验设计临床试验按其目的大体可分?quot;“验证性(Confirmatory)”试验和“探索性ploratory)”试验,验证性试验是控制良好的试验,总是预先定义与试验目的直接有关的关键假设,并且在试验完成后对此进行检验。验证性试验必须提供疗效和安全性的可靠证据。新药临床试验中大部分是确认性试验。但一个临床试验常具有验证性和探索性两方面。对于每一个支持上市申请的临床试验,所有关于设计、实施和统计分析的要点应当于试验开始前在试验方案中写明。试验方案中的统计学设计包括:试验设计,样本大小的确定和为避免偏差而采用的技术。1.2.1平行组设计(Paralleldesign)验证性试验的最常见设计是平行组设计。受试者被随机分配到两个(或多个)组中的一个,每个组接受不同的治疗。治疗包括一个或几个剂量的研究产品,以及一个或多个对照(如安慰剂和/或阳性对照)。这种设计最有效,其假定比其他设计简单,有明确的有效性结果,完成研究时间较短。但是,这种设计需要较大的样本,有较大的受试者变异,比较复杂。试验的某些特点会使结果的分析和解释复杂化,如协变量问题、在一段时间内的重复多次测定、设计因子之间的相互作用、违反设计等等。1.2.2交互设计(Crossoverdesign)在交叉设计中,每例受试者被随机分配到两个或多个治疗序列中的一个,其自身在治疗比较中作为对照。这个简单设计的吸引力在于它减少了受试者例数。在最简单的2x交叉设计中,受试者按随机顺序在两个连续的治疗周期(间隔一个洗脱期)中分别接受两种治疗。这种设计可以扩大到对象在n(>2)个周期接受n种不同治疗。交叉设计的优点是所需受试者数较小,消除了受试者间变异。但是,除了试验时间较长、序列效应和周期效应需作分析以外,交叉设计存在许多可能会使其结果无效的问题,主要是可能带入延期(Carryover)效应。在2x2设计中,由于缺少把握度(power),统计学上不能从治X周期相互作用项来鉴别延期效应。使用交叉设计时很重要的是避免延期效应。要做到这一点,在设计时必须对疾病和新药有足够的认识。所研究的疾病应当是慢性病且病情稳定;药物的作用在治疗周期内应当充分展现。洗脱期要足够长,以使药物的作用完全消退。交叉设计要注意的其他问题还有受试者出组造成的分析和解释的复杂性;潜在的延期效应可导致对发生在后一治疗周期的不良事件认定的难度。通常2x2交叉设计用于证明同一药物两种制剂的生物等效性试验。在这一特例中,受试者是健康志愿者。只要洗脱期足够长,延期效应不可能发生。但是,在试验中仍要在每个治疗周期开始时进行测定,没有检测到药物即可确认没有延期效应。1.2.3析因设计(Factorialdesign)析因设计通过不同的治疗组合可同时评价两个或多个治疗。最简单的例子是2x2析因设计,受试者被随机分配到两种治疗(A,B)的4种可能组合中的一个:A,B,AB,无A无B。这一设计在多数情况下系用于检查A与B的相互作用的特殊目的。如果根据主效应计算样本数,统计检验可能缺乏把握度检测相互作用。如果该设计用来检查A和B的联合作用,特别是一起使用两种治疗时,要特别注意样本数的问题。析因设计的另一重要用途是确定同时使用治疗C和D的剂量-反应特征。设C有m个剂量水平(通常包括零剂量、安慰剂),治疗D有n个剂量水平,那么完全析因设计包含了mxn个治疗组,每个接受不同剂量的C、D组合。反应面(responsesurface)的结果估算有助于鉴别合适的临床使用剂量组合。1.2.4多中心临床试验多中心临床试验是一种实践上可被接受、且更加有效地评价新药的方法。它的优点是可以在合理的时间内招募足够多的受试者,而且多中心临床试验为其研究结论的普遍性提供了良好的基础。一个多中心临床试验要成功,必须采用同样的试验方案并严格按此实施临床试验,需要有尽可能完善的实施临床试验的标准化操作程序(SOP)。样本大握度的计算通常是假定各中心所比较的治疗差异是同样数量的无偏差估计,多中心试验应当避免各中心招募的受试者人群特征变化过大以及样本量过小的中心,以降低治疗效果的不同权重估算的差异。每个中心必须有一个主要研究人员负责本中心的研究工作符合设计要求,试验前集中对各中心人员进行必要的培训,实施试验过程中的质量控制。多中心研究中,研究人员可能从一个医院入选对象,也可能一个研究人员从几个协作医院入选受试者。因此,试验方案中应该对中心有明确的定义(如指研究人员、医院或地区),多数场合中心以研究人员来限定。如果每个中心有相当数量的受试者,在分析多中心研究的主要治疗效应时,要考虑中心间的均匀性。1.3临床试验中的有关考虑1.3.1避免偏差的技术(l)育法采用盲法技术是为了防止由于对于治疗的了解而引起的有意识和无意识的在实施和评价临床试验中的偏差。因此,盲法的基本目的是在发生偏差的机会过去之前防止识别接受的是何种治疗。①单盲试验受试者或研究人员/工作人员一方不知道所接受治疗。②双盲试验受试者和参加临床试验或临床评价的研究人员或申办者方工作人员均不知道也不能识别对象接受了何种治疗的称为双盲试验。在试验实施过程中一直保持盲态。只有在试验结束、完成数据清理、数据已达到可以接受水平并且锁定后方可由指定人员揭盲。要达到理想的双盲会遇到一些问题:如完全不同的治疗(手术和药物);两种药物剂型不同,而改变剂型如胶囊可能会引起药代动力学和/或药效动力学特征的改变,从而需要确定制剂的生物等效性;两种制剂的给药方案可能不同,等等。在这种情况下,可采用双模拟(double-dummy)技术。即为每一种制剂,如A、B,准备一个一模一样的安剂,受试者接受A(活性)+B(安慰剂)或A(安慰剂)+B(活性)。但是,由于明显的治疗效应,某些双盲临床试验仍会遇到问题。在这种情况下,对研究人员和有关人员加盲可改善盲法,即所谓三盲试验。(2)随机化随机化为在临床试验中受试者接受某种治疗引入了审慎的机遇成分。它为以后的数据分析提供了一个坚实的统计基础。随机化所产生的治疗组,基线中已知和未知预后因子(Prognosticfactor)的分布相仿。随机化与盲法相结合,会大大有助于避免在指定治时由于可预见性所引起的选择和分配受试者的可能偏差。与无限制的随机相比,区组随机有两个优点:有助于增加治疗组间的可比性(尤其是受试者特征随时间可能变化时),和保证治疗组有几乎相同的受试者数。但要注意区组长度不宜过长也不宜过短,过长可能会产生不平衡,过短则会使区组末段的分配有可预见性。多中心试验的随机化程序应当以中心为单位。各个中心有各自的随机表,但应该是完整的区组。表2影响样本大小的因素因素对样本大小的影响治疗组数目公式计算的是每个组所需要的例数结果变量的测定连续变量或(转化为)两分变量预期受试者随访时间随访时间长则事件发生率高,对给定的α、β,所需例数较少备择假设双侧或单侧可检测到的治疗差异必须符合实际。差异大则所需例数少所定的Ⅰ类Ⅱ类错误通常取αβ。适用于:对照治疗已经广泛应用且安全有效;试验药物为新药。α与β越小,所需例数越多受试者分配比通常取各组例数相同。当有其他目的时,或为了提高精确度(降低方差)时,取组间例数不等同。如r个治疗组与一个对照组比较时,可取对照组例数为治疗组的(r)1/2[上标]倍。预期的失访率样本数应根据失访率相应扩大预期的治疗不依从率药物暴露不足或过量;受试者/医生不遵循设计方案规定,例数应增加基线变量的分层程度分层后亚组的受试者数减少多重比较按多个治疗组比较多个终点有一个主要结果、多个次要结果。样本大小通常按主要变量计算。有时对每个结果变量计算所需样本数,取最大样本数。1.3.2试验样本量的确定临床试验应当有足够功效(把握度)检测不同治疗之间的差异。样本应当足够大才可以对所提出的问题做出可靠的回答。一个临床试验的样本大小是由研究目的、反映研究目的的研究假设和由此导出的统计检验所确定的。样本量通常是根据试验的主要目的计算的。如果样本大小根据其他变量,如安全性变量或次要目的计算,应当在设计书中有清楚说明并给出理由。(1)影响样本大小的因素在计算所需样本量之前,下列各项应有明确的定义:主要变量;试验数据的统计检验;零假设和备择假设;Ⅰ类和Ⅱ类错误;计量数据的差值、标准差和参考值;计数数据的率。下面介绍3种常用的计算临床试验样本大小的方法。计算所得的是每组所需受试者例数。考虑到试验中受试者因不良事件退出的比例,实际筛选受试者数还需根据估算的比例增加。在计算临床试验样本大小时要考虑的因素和它们的影响简列于表2。(2)样本大小的计算①试验的结果变量为定性的两分(值)变量式中,P1:为对照标准治疗的成功率。P2:为试验治疗的成功率。α:为检测治疗差异的c2显著性检验水平,通常取0.05。1-β:如果差异P2-P1存在,检测到这种差异的把握度或功效。α通常又称Ⅰ类错误,即当实际上两种治疗同样有效时,检测到有显著差异的概率,相当于假阳性率。β通常又称Ⅱ类错误,即当差异P2-P1确实存在时没有检测到这种差异的概率,相当于假阴性率。f(α,β):α和β的函数。其常用值列于表3。表3用于计算所需受试者数公式中的f(α,β)值β(Ⅱ类错误)0.050.10.20.5
本文标题:数据统计方法与临床试验方案
链接地址:https://www.777doc.com/doc-2429724 .html