您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 新人教版九下27.2.1相似三角形的判定(一)教案
1第二十七章相似27.2.1相似三角形的判定(一)〔教学目标〕1.了解相似比的定义,掌握判定两个三角形相似的方法:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似;如果两个三角形的三组对应边的比相等,那么这两个三角形相似。2.培养学生的观察﹑发现﹑比较﹑归纳能力,感受两个三角形相似的判定方法1与全等三角形判定方法(SSS)的区别与联系,体验事物间特殊与一般的关系。3.让学生经历从实验探究到归纳证明的过程,发展学生的合情推理能力。〔教学重点与难点〕重点:两个三角形相似的判定引例﹑判定方法1难点:探究判定引例﹑判定方法1的过程〔教学设计〕教学过程设计意图说明新课引入:1.复习相似多边形的定义及相似多边形相似比的定义↓相似三角形的定义及相似三角形相似比的定义2.回顾全等三角形的概念及判定方法(SSS)↓相似三角形的概念及判定相似三角形的思路。从相似多边形的概念及全等三角形的概念两个以旧引新,帮助学生建立新旧知识间的联系,体会事物间一般到特殊﹑特殊到一般的关系。提出问题:如图27·2-1,在∆ABC中,点D是边AB的中点,DE∥BC,DE交AC于点E,∆ADE与∆ABC有什么关系?FEDABC分析:观察27·2-1易知AD=12AB,AE=12AC,∠A=∠A,∠ADE=∠ABC,∠AED=∠ACB,只需引导学生证得DE=12BC即可,学生不难想到过E作EF∥AB。↓∆ADE∽∆ABC,相似比为12。通过观察特殊平行条件(经过三角形一边的中点平行于另一边)下两三角形的相似关系,引导学生思考一般平行条件(平行于三角形一边的直线和其他两边相交)下两三角形的相似关系,进一步体会事物间特殊到一般的关系。2延伸问题:改变点D在AB上的位置,先让学生猜想∆ADE与∆ABC仍相似,然后再用几何画板演示验证。↓归纳:平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。通过几何画板演示,培养学生的实验探究意识。探究方法:探究1在一张方格纸上任意画一个三角形,再画一个三角形,使它的各边长都是原来三角形各边长的k倍,度量这两个三角形的对应角,它们相等吗?这两个三角形相似吗?分析:学生通过度量,不难发现这两个三角形的对应角都相等,根据相似三角形的定义,这两个三角形相似。(学生小组交流)在学生小组交流的基础上引导学生思考证明探究所得结论的途径。分析:作A1D=AB,过D作DE∥B1C1,交A1C1于点E∆A1DE∽∆A1B1C1。用几何画板演示∆ABC平移至∆A1DE的过程A1D=AB,A1E=AC,DE=BC∆A1DE≌∆ABC∆ABC∽∆A1B1C1↓归纳:如果两个三角形的三组对应边的比相等,那么这两个三角形相似。学生通过作图,动手度量三角形的各边长及三角形的角,在动手实践中探究几何结论成立与否,加深了学生对定理的重发现体验。通过几何画板演示让学生从中体会到把不熟悉的几何问题(如果两个三角形的三组对应边的比相等,那么这两个三角形是否相似?)转化为熟悉的几何问题(平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似)的过程。对几何定理作文字语言﹑图形语言﹑符号语言的三维注解有利于学生进行认知重构,以全方位地准确把握定理的内容。ABCA1DEB1C1ABCA1B1C13↓若11ABAB11BCBC11CAkCA则∆ABC∽∆A1B1C1突出几何定理的图形语言﹑符号语言可以帮助学生完成几何定理的建模。运用提高:1.P47练习题1(2)。2.P47练习题2(2)。运用两个三角形相似的判定方法(1)进行相关证明与计算,让学生在练习中熟悉定理。课堂小结:说说你在本节课的收获。让学生及时回顾整理本节课所学的知识。布置作业:1.必做题:P55习题27·2题2(1),3(1)。2.选做题:P55习题27·2题4,5。3.备选题:如图,E是平行四边形ABCD的边BC的延长线上的一点,连结AE交CD于F,则图中共有相似三角形()A、1对B、2对C、3对D、4对分层次布置作业,让不同的学生在本节课中都有收获。备选题答案:C设计思想:本节课主要是探究两个三角形相似的判定引例﹑判定方法1,因此在教学设计中突出了“探究”的过程,先让学生利用刻度尺、量角器等作图工具作静态探究,然后教师再应用“几何画板”等计算机软件作动态探究,从而给学生以深刻的实验几何的数学学习体验。此外,本课教学设计在引导学生知识重构的维度上重视应用“比较”“类比”“猜想”的教学法,促使学生尽可能进行“有意义”的而非“机械、孤立”的认知建构,并在这一建构过程中发展合情推理能力。
本文标题:新人教版九下27.2.1相似三角形的判定(一)教案
链接地址:https://www.777doc.com/doc-2434457 .html