您好,欢迎访问三七文档
第一章引言随着现代技术的发展,恒定电流源的应用将十分重要,如机器人、工业自动化、卫星通信、电力通讯、智能化仪器仪表以及其它数字控制等方面都迫切需要应用恒定电流器件,因此,研究和开发恒流器件具有十分重要的意义。许多场合,尤其是高精度测控系统需要高精度的电压源与电流源。微电子工艺的高度发展,给我们提供了许多小型化、集成化的高精度电压源,但电流源,特别是工作电流大的高精度电流源仍需使用者自行设计实现。恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。本论文主要概括了恒流源的基本概念,并设计出几种不同要求的恒流源,运用了SPCE061A单片机设计出新型数控恒流源,具有高稳定性和高灵敏性。对以往恒流源进行了改进创新。第二章基本恒流源电路2.1恒流源基础知识基本恒流源电路是恒流源电路的基本组成,是分析恒流源电路的基础。2.1.1恒流源介绍恒流源,是一种能向负载提供恒定电流之电路.它既可以为各种放大电路提供偏流以稳定其静态工作点,又可以作为其有源负载,以提高放大倍数.并且在差动放大电路、脉冲产生电路中得到了广泛应用.过一定的论述.然而,对各种恒流电路之对比分析,各自应用特点,以及需要改进的方面,还有待进一步研究,本文就来探讨这些问题.2.1.2恒流源的原理和特点2.1.3恒流源的分类一般而言,按照恒流源电路主要组成器件的不同,可分为三类:晶体管恒流源、场效应管恒流源、集成运放恒流源.下面分别予以说明.2.1.3.1晶体管恒流源这类恒流源以晶体三极管为主要组成器件,利用晶体三极管集电极电压变化对电流影响小,并在电路中采用电流负反馈来提高输出电流之恒定性.通常,还采用一定的温度补偿和稳压措施.其基本型电路如图2.1.3.1所示.图2.1.3.1基本型电路图2.1.3.2改进型电路R1、R2分压稳定B点电位,Re形成电流负反馈,输出电流I0=(Vb-VBE)/Re≈Vb/Re(VBVBE).且其等效内阻[4]为:rint=rce[1+βRe(Rb+rbe+Re)](1)式中rce为晶体管T集射极间电阻,一般为几十千欧以上;rbe为晶体管T输入电阻,一般为几千欧左右;Rb=R1//R2.若设Re=5kΩ,Rb=10kΩ,晶体管参数rce=100kΩ,β=100,rbe=2.6kΩ.可得到rint=100×1+100×5/(10+2.6+5)=3MΩ可见,只需几伏的工作电压,采用一个晶体管,其等效内阻是非常巨大的.为了减小温度变化对晶体管参数的影响进而影响输出电流的恒定性,可采用图2.1.3.2所示改进型电路.图2.1.3.2(a)中,二极管D作温度补偿,抵销温度变化对晶体管T参数Vbe的影响.为了更好地解决管子温度特性一致的问题,图2.1.3.2(b)中,三极管T1接成二极管的形式.有时,为了减小电源电压波动对输出电流之影响,图2.1.3.2(c)中采用了稳压管Dz进行稳压.图2.1.3.2(b)中,流过基准电阻R的电流IR与输出电流I0的关系[1]为:I0/IR=R2/R1,故又称为比例电流源.若令R1=R2或都为零,则I0=IR,称为镜像电流源.若令R1=0,则可得到微安量级的输出电流,称之为微电流源,主要应用于需要提供微小偏流的场合.有时,要实现输出电流可控,且极性可正可负的恒流源,可采用图2.1.3.3所示电路图Vi为输入控制电压,三极管T1、T2参数一致.当Vi=0时,I1=I2,I0=0;Vi0时,I1I2,I00;Vi0时,I1I2,I00;且由图2.1.3.3可得V+Vi-VBE2V-Vi-Vbe1图2.1.3.3双极性恒流源I。=4I2=4ReRe.因而I0=I1-I2=-Vi/2Rc.可见,输入控制电压Vi实现了对输出电流I0极性与大小的控制.2.1.3.2场效应管恒流源由场效应晶体管作为主要组成器件的恒流电路如图2.1.3.4所示.图2.1.3.4(a)中,R1、R2分压稳定B点电位,VB=R2·Vcc\(R1+R2),而VGS=VB-IDRS,,根据公式[5]:ID=IDSS(1-VGSVp)*2(2)可解得RS=[Vb+|Vp|(1-ID/IDSS)]/ID式中VP表示为夹断电压,IDSS为饱和漏极电流.也可以去掉电源辅助回路,变成一纯两端网络,电路如图2.1.3.4(b)所示,由图可得VGS=-IDRS图2.1.3.4场效应管恒流源图2.1.3.5改进型对于场效应管恒流源的等效内阻,我们也不难导出rint=rDS(1+SRS)(3)式中rDS为场效应管漏源极间电阻,S为其跨导.若设rDS=100kΩ,S=2mA/V,Rs=5kΩ,则rint=1.1MΩ.可见,其等效内阻也是非常巨大的.另外,从(1)式与(3)式还可以看到,将电阻Re或Rs增大,晶体管恒流源内阻则趋于最大值βrce,而场效应管恒流源内阻会趋近于无穷大.由此,采用较大负反馈电阻,场效应管恒流源会取得更好的等效内阻指标.若将场效应管与晶体管配合使用,组成如图2.1.3.5所示电路,并辅之以温度补偿和稳压措施,则恒流效果会更佳.图2.1.3.5中,设晶体管T2级等效内阻为RS,则Rs=rce[1+βRe(Rb+rbe+Re))代入公式(3),可求得该恒流电路等效内阻rint=rDS{1+s·rce[1+βRe(Rb+rbe+Re)]}≈s·rDS·rce(1+βRe(Rb+rbe+Re))可见,其等效内阻进一步增大.2.1.3.3集成运放恒流源若要扩大输出电流的取值范围,采用如图2.1.3.6所示的集成运放恒流源.图2.1.3.6(a)中,稳压管Dz进行稳压,T1栅流极小,输出恒流I0=Vz/R1,只要T2的参数允许,这种电路可输出几百mA以上的稳定电流.有时,需要负载一端按地的场合,电路如图2.1.3.6(b)所示,输出恒流I0=V2/R2.假定运算放大器能供给5mA以上的基流,晶体管β100,则I0可以超过500mA.为防止运算放大器和晶体管进入饱和状态影响电路的正常工作,负载RL取值不能过大,该电路适应于小负载大电流的场合.图2.1.3.6集成运放恒流源在某种特殊情况下,需要实现两个电压的差值来控制输出电流,电路如图2.1.3.7所示.很显然图2.1.3.7差动恒流源2.2总结各种恒流源特点①由晶体管构成的恒流源,广泛地用作差动放大器的射极公共电阻,或作为放大电路的有源负载,或作为偏流使用,也可以作为脉冲产生电路的充放电电流,由于晶体管参数受温度变化影响,大多采用了温度补偿及稳压措施,或增强电流负反馈的深度以进一步稳定输出电流.②场效应管恒流源较之晶体管恒流源,其等效内阻较小,但增大电流负反馈电阻,场效应管恒流源会取得更好的效果.且无需辅助电源,是一个纯两端网络,这种工作方式十分有用,可以用来代替任意一个欧姆电阻.通常,将场效应和晶体管配合使用,其恒流效果会更佳.③由于温度对集成运放参数影响不如对晶体管或场效应管参数影响之显著,由集成运放构成的恒流源具有稳定性更好,恒流性能更高之优点.尤其在负载一端需接地,要求大电流的场合,获得了广泛应用.④恒流源电路,既可以实现双极性控制,又可以实现差动控制,增强了其使用灵活性.2.3恒流源电路在实践中的应用恒流源是能够向负载提供恒定电流的电源,因此恒流源的应用范围非常广泛,并且在许多情况下是必不可少的。例如在用通常的充电器对蓄电池充电时,随着蓄电池端电压的逐渐升高,充电电流就会相应减少。为了保证恒流充电,必须随时提高充电器的输出电压,但采用恒流源充电后就可以不必调整其输出电压,从而使劳动强度降低,生产效率得到了提高。恒流源还被广泛用于测量电路中,例如电阻器阻值的测量和分级,电缆电阻的测量等,且电流越稳定,测量就越准确。恒流源的设计方法有多种,最简单的恒流电路是FET或恒流二极管,但其电流值有限且稳定度也较差。分别论述线性恒流源、开关恒流源和集成稳压器恒流源电路的结构原理及特点。2.3.1采用集成运放构成的线性恒流源电路构成如图2.3.1所示,两个运放(一片324)构成比较放大环节,BG1、BG2三极管构成调整环节,RL为负载电阻,RS为取样电阻,RW为电路提供基准电压。工作原理:如果由于电源波动使Uin降低,从而使负载电流减小时,则取样电压US必然减小,从而使取样电压与基准电压的差值(US-Uref)必然减小。由于UIA为反相放大器,因此其输出电压Ub=(R5/R4)×Ua必然升高,从而通过调整环节使US升高恢复到原来的稳定值,保证了US的电压稳定,从而使电流稳定。当Uin升高时,原理与前类同,电路通过闭环反馈系统使US下降到原来的稳定值,从而使电流恒定。调整RW,则改变Uref,可使电流值在0~4A之间连续可调。IL=R2×Uref/[(R2+R3)×RS]图2.3.1采用集成运放的线性恒流源2.3.2采用开关电源的开关恒流源电路构成如图2.3.2所示。BG1为开关管,BG2为驱动管,RL为负载电阻,RS为取样电阻,SG3524为脉宽调制控制器,L1、E2、E3、E4为储能元件,RW提供基准电压Uref。图2.3.2采用开关电源的开关恒流源工作原理:减小开关器件的导通损耗和开关损耗是提高电路效率的关键。为此,器件选择饱和压降小、频率特性好的开关三极管和肖特基续流二极管。图2.3.2采用开关电源的开关恒流源扼流圈L1的磁芯上再绕一个附加线圈,利用电磁反馈降低开关三极管的饱和压降,并采用合理的结构设计,使电路的分布参数得到有效的控制。当电源电压降低或负载电阻RL降低时,则取样电阻RS上的电压也将减少,则SG3524的12、13管脚输出方波的占空比增大,从而使BG1导通时间变长,使电压U0回升到原来的稳定值。BG1关断后,储能元件L1、E2、E3、E4保证负载上的电压不变。当输入电源电压增大或负载电阻值增大引起U0增大时,原理与前类同,电路通过闭环反馈系统使U0下降到原来的稳定值,从而达到稳定负载电流IL的目的。2.3.3采用集成稳压器构成的开关恒流源电路构成如图2.3.3所示。MC7805为三端固定式集成稳压器,RL为负载电阻,RW为可调电阻器。工作原理:固定式集成稳压器工作在悬浮状态,在输出端2和公共端3之间接入一电位器RW,从而形成一固定恒流源。调节RW,可以改变电流的大小,其输出电流为:IL=(Uout/RW)+Iq式中Iq为MC7805的静态电流,小于10mA。当RW较小即输出电流较大时,可以忽略Iq。当负载电阻RL变化时,MC7805用改变自身压差来维持通过负载的电流不变。图2.3.3采用集成稳压器构成的开关恒流源采样电位器RW的确定:RW的值可由RW=Uout/IL确定。因Uout=5V,IL=0.5~2A,因此确定的取值范围为2.5~10Ω。输出电压和负载变化范围的确定:根据设计要求,本例的输出电压U0=10V。由于恒流源的输出电流可调范围为0.5~2A,因此相应的负载变化范围为5~20Ω。以上几种恒流源结构简单,可靠性高,调整方便,在科研中已得到了应用。其中线性恒流源适用于蓄电池的恒流放电,开关恒流源适用于蓄电池的恒流充电,集成稳压器构成的恒流源适用于电阻测量等。2.4单片机控制的数控直流恒流源采用凌阳16位SPCE061A单片机。此单片机功能较强、兼容性好、性价比高;具有体积小、集成度高、易扩展、可靠性高、功耗小以及具有较高的数据处理和运算能力,系统最高时钟频率可达49MHz,运行速度快;详细软硬件设计,系统的系统框图如图2.4.1,系统工作原理为:当有键盘按键对电流值进行预置时,SPCE061A单片机把所预置的数值送到液晶显示器显示,同时作为电流源的给定值,并输出相应的数字信号,通过D/A转换,使数字信
本文标题:恒流源的研究
链接地址:https://www.777doc.com/doc-2438390 .html