您好,欢迎访问三七文档
绪论地球是太阳系族中的一个行星,地球体的表层,即地壳,是各种地质作用进行的场所,是人类赖以生活和活动的场所,一切工程建(构)筑物都建筑在地壳上,同时,也是建筑材料和矿产资源的主要来源地。因此,地壳是地球科学研究的主要对象,构成人类生存和工程建筑的环境和物质基础。我们这些未来的工程师有必要了解和掌握这方面的有关知识。1.1地质学与工程地质学1.1.1地质学地质学是一门关于地球的科学,它研究的对象主要是固体地球的上层,主要有以下方面内容:(1)研究组成地球的物质:矿物学、岩石学、地球化学等分支学科;(2)阐明地壳及地球的构造特征:即研究岩石或岩石组合的空间分布,如构造地质学、区域地质学、地球物理学等分支学科;(3)研究地球的历史以及栖居在地质时期的生物及其演变:如古生物学、地史学、岩相古地理学等;(4)地质学的研究方法与手段,如同位素地质学、数学地质学及遥感地质学等;(5)研究应用地质学以解决资源探寻、环境地质分析和工程防灾问题:主要有两方面,一是以地质学理论和方法指导人们寻找各种矿产资源,如矿床学、煤田地质学、石油地质学等;二是运用地质学理论和方法研究地质环境,查明地质灾害的规律和防治对策,以确保工程建设安全、经济和正常运行。1.1.2工程地质学(Engineeringgeology)工程地质学是地质学的重要分支学科,是把地质学原理应用于工程实际的一门学问,它研究岩土工程中的地质问题,即在工程建筑设计、施工和运营的实施过程中合理地处理和正确地使用自然地质条件和改造不良地质条件。(1)工程地质学的发展工程地质学在经济建设和国防建设中应用非常广泛,早在20世纪30年代就获得迅速发展,并成为一门独立的学科。我国工程地质学的发展始于建国初期,经过50多年的努力,不仅能适应国内建设的需要并开始走向世界,建立了具有我国特色的学科体系。随着生产的发展和研究的深入,形成一些新的分支学科,如环境工程地质、海洋工程地质与地震工程地质等。人类工程活动作为环境演化的积极而活动的因素及工程和环境的密切关联性已成为当今研究的重要方向。(2)工程地质学的主要任务工程地质研究的基本任务,可归结为三方面:A.区域稳定性研究与评价,是指由内力地质作用引起的断裂活动,地震对工程建设地区稳定性的影响;B.地基稳定性研究与评价,是指地基的牢固、坚实性;C.环境影响评价,是指人类工程活动对环境造成的影响。工程地质学的具体任务是:A.评价工程地质条件,阐明地上和地下建筑工程兴建和运行的有利和不利因素,选定建筑场地和适宜的建筑型式,保证规划、设计、施工、使用、维修顺利进行;B.从地质条件与工程建筑相互作用的角度出发,论证和预测有关工程地质问题发生的可能性、发生的规模和发展趋势;C.提出及建议改善、防治或利用有关工程地质条件的措施、加固岩土体和防治地下水的方案;D.研究岩体、土体分类和分区及区域性特点;E.研究人类工程活动与地质环境之间的相互作用与影响。(3)工程地质学的研究方法工程地质学的研究对象是复杂的地质体,所以其研究方法应是地质分析法与力学分析法、工程类比法与实验法等的密切结合,即通常所说的定性分析与定量分析相结合的综合研究方法。要查明建筑区工程地质条件的形成和发展,以及它在工程建筑物作用下的发展变化,首先必须以地质学和自然历史的观点分析研究周围其它自然因素和条件,了解在历史过程中对它的影响和制约程度,从而才有可能认识它形成的原因和预测其发展趋势和变化,这就是地质分析法。在阐明主要工程地质问题形成机制的基础上,建立模型进行计算和预测,例如地基稳定性分析,地面沉降量计算,地震液化可能性计算等,这就属于力学分析法。当地质条件十分复杂时,可根据条件类似地区已有资料对研究区的问题进行定量预测,即采用类比法进行评价。采用定量分析方法论证地质问题时都需要采用实验测试方法,即通过室内或野外现场试验,取得所需要的岩土的物理性质、水理性质、力学性质数据,通过长期观测地质现象的发展速度也是常用的试验方法。综合应用上述定性分析和定量分析方法,才能取得可靠的结论,并对可能发生的工程地质问题制定出合理的防治对策。1.2工程地质条件与工程地质问题1.2.1工程地质条件工程地质条件是指工程建筑物所在地区地质环境各项因素的综合,这些因素包括:A.地层岩性:是最基本的工程地质因素,包括它们的成因、时代、岩性、产状、成岩作用特点、变质程度、风化特征、软弱夹层和接触带以及物理力学性质等;B.地质构造:工程地质工作研究的基本对象,包括褶皱、断层、节理构造的分布和特征;地质构造,特别是形成时代新、规模大的优势断裂,对地震等灾害具有控制作用,因而对建筑物的安全稳定、沉降变形等具有重要意义;C.水文地质条件:重要的工程地质因素,包括地下水的成因、埋藏、分布、动态和化学成分等;D.地表地质作用:是现代地表地质作用的反映,与建筑区地形、气候、岩性、构造、地下水和地表水作用密切相关,主要包括滑坡、崩塌、岩溶、泥石流、风沙移动、河流冲刷与沉积等等,对评价建筑物的稳定性和预测工程地质条件的变化意义重大;E.地形地貌:地形是指地表高低起伏状况、山坡陡缓程度与沟谷宽窄及形态特征等,地貌则说明地形形成的原因、过程和时代;平原区、丘陵区和山岳地区的地形起伏、土层厚薄和基岩出露情况、地下水埋藏特征和地表地质作用现象都具有不同的特征,这些因素都直接影响到建筑场地和线路的选择。1.2.2工程地质问题已有的工程地质条件在工程建筑和运行期间会产生一些新的变化和发展,构成威胁影响工程建筑安全的地质问题称为工程地质问题。主要的工程地质问题包括:A.地基稳定性问题:是工业与民用建筑工程常遇到的主要工程地质问题,它包括强度和变形两个方面,另外岩溶、土洞等不良地质作用和现象都会影响地基稳定,铁路、公路等工程建筑则会遇到路基稳定性问题;B.斜坡稳定性问题:自然界的天然斜坡是经受长期地表地质作用达到相对协调平衡的产物,人类工程活动尤其是道路工程需开挖和填筑人工边坡(路堑、路堤、堤坝、基坑等),斜坡稳定对防止地质灾害发生及保证地基稳定十分重要;斜坡地层岩性、地质构造特征是影响其稳定性的物质基础,风化作用、地应力、地震、地表水和地下水等对斜坡软弱结构面的作用往往破坏斜坡稳定,而地形地貌和气候条件是影响其稳定的重要因素;C.洞室围岩稳定性问题:地下洞室被包围于岩土体介质(围岩)中,在洞室开挖和建设过程中破坏了地下岩体原始平衡条件,便会出现一系列不稳定现象,常遇到围岩塌方、地下水涌水等。一般在工程建设规划和选址时要进行区域稳定性评价,研究地质体在地质历史中受力状况和变形过程,做好山体稳定性评价,研究岩体结构特性,预测岩体变形破坏规律,进行岩体稳定性评价以及考虑建筑物和岩体结构的相互作用。这些都是防止工程失误和事故、保证洞室围岩稳定所必要和必需的工作。D.区域稳定性问题:地震、震陷和液化以及活断层对工程稳定性的影响,自1976年唐山地震后越来越引起岩土工程界的注意;对于大型水电工程、地下工程以及建筑群密布的城市地区,区域稳定性问题应该是需要首先论证的问题。1.3工程地质在岩土工程中的应用1.3.1基本概念(1)建筑物:其含义广泛,可分为房屋建筑和构筑物两大类,住宅和公用建筑称为建筑物,而为专门生产工艺使用的建筑物,如发电站、水塔、车间、桥梁、烟囱等称为构筑物。(2)建筑场地:指工程建设所直接占有并直接使用的有限面积的土地,大体相当于厂区、居民点和自然村的区域范围的建筑物所在地;从工程勘察角度分析,场地的概念不仅代表着所划定的土地范围,还应涉及建筑物所处的工程地质环境与岩土体的稳定问题。(3)建筑物地基:指在土和岩层中修建建筑物,承受建筑物全部重量的那部分土和岩层;建筑物的基础是其下部的组成部分,又称做下部结构;基础承受整个建筑物的重量并将它们传递给地基;地基又分成持力层与下卧层两部分,直接与基础接触的土层叫持力层,持力层下部的土层叫下卧层。(4)天然地基:指未经加固处理、直接支承基础的地基。(5)软弱地基:指主要由淤泥、淤泥质土、松散的砂土、冲填土、杂填土或其他高压缩性土层所构成的地基。(6)人工地基:若地基土层较软弱,建筑物的荷重又较大,地基承载力和变形都不能满足设计要求时,需对地基进行人工加固处理,这种地基称为人工地基。(7)地基承载力:地基是否具有支承建筑物的能力,常用地基承载力来表达,地基承载力是指地基所能承受由建筑物基础传递来的荷载的能力;要确保建筑物,地基稳定和满足建筑物使用要求,地基与基础设计必须满足两个基本条件:①要求作用于地基的荷载不超过地基的承载能力,保证地基具有足够的防止整体破坏的安全储备;②控制基础沉降使之不超过地基的变形容许值,保证建筑物不因地基变形而损坏或影响其正常使用;良好的地基一般具有较高的强度和较低的压缩性。基础(Foundation)指与地基接触的建筑物下部结构。一般建筑物由上部结构(Superstructure)和基础两部分组成。1.3.2工程地质在岩土工程中的应用任何工程建筑物都是营造在一定的场地与地基之上,所有工程建设方式、规模和类型都受建筑场地的工程地质条件所制约,会遇到各种各样的自然条件和地质问题,如青藏公路、三峡工程、南水北调工程等都是以地质条件复杂著称于世。地基的好坏不仅直接影响到建筑物的经济和安危,而且一旦出事故,处理比较难。因此,在设计每一个建筑物之前,必须进行场地与地基的岩土工程勘察,充分了解建筑场地与地基的工程地质条件,论证和评价场地、地基的稳定性和适宜性、不良地质现象、软弱地基处理与加固等岩土工程的技术决策和实施方案。工程地质勘察报告中必须提供建筑场地岩土层的地基承载力值。可见,工程地质工作很重要,是设计之先驱,没有足够考虑工程地质条件而进行设计,这是盲目的设计,不仅会导致建筑费用增高、工程量增大、施工期限拖长,而且产生安全隐患,在个别的情况下,建筑物将发生变形或破坏,甚至废弃使用。图0-1解决办法:对建筑场地进行工程地质勘察,对可能出现的问题进行分析,从而采取相应的措施,如设置挡墙和加强排水等。加拿大某谷仓地基破坏事例淤泥质软粘土层厚达十余米基底压力大于极限承载力导致地基整体滑动破坏比萨斜塔倾斜原因及治理对策基础建立在一半是软粘土一半是砂卵石的地基上。由于次固结作用产生倾斜。塔高56.7m。向南偏离了4.5m。1990年停止开放。按南侧每年沉降1.4mm推算,2003或2004年斜塔可能倒塌。治理措施:1、用5根10~40cm粗的钢缆在下部打箍;2、将600吨铝注入塔基北侧;3、在南侧地基中注水,扶正该塔。虎丘斜塔(959-961)7层8面,重6000吨。残高47.7m,NE斜2.34m(2°49’,最大3°49’)中国2002年的地质灾害2003年4月3日公布的中国国土资源公报说,2002年全国发生各类突发性地质灾害40246起,造成853人死亡,109人失踪,直接经济损失51亿元。目前,我国已完成168个县市调查,建立了相应的信息系统和群测群防网络,它们成功预报地质灾害703次,避免人员伤亡近两万人,避免直接经济损失2.36亿元。三峡库区地质灾害治理和监测工程已全面实施。三峡大坝是一座坚固的混凝土重力坝,大坝由2689万吨混凝土外加29万吨钢筋和25.5万吨钢材组成,坝高185米,大坝底部宽121米,坝高和坝宽都超过100米。三峡大坝是重力坝,每一个坝块都可以依靠自身的重力来保证自己的稳定。另外,三峡水库是“一线水”,而不是很多人想像中的“一盆水”,水库的长度达600多公里,平均宽度仅1.1公里,其下游段为三峡河谷,千回百转,全长200公里,这是一个少见的“河床型”水库。连接四川省会成都和云南省会昆明的成昆铁路,全长1100km。成昆铁路1958年北段开始施工,以后几上几下,至1964年,仅建成成都至青龙场61.5公里。1964年西南铁路建设大会战,重新开始建设,1970年7月1日建成通车。成昆铁路范围包括四川、云南两省的7个地(州)、市,共13万平方公里。沿线物产、资源丰富。成都至峨眉,穿过素有“川西粮仓”之称的川西平原;铁路通过的西昌、攀枝花地区,矿产、水力资源极为
本文标题:工程地质学基础.
链接地址:https://www.777doc.com/doc-2444074 .html