您好,欢迎访问三七文档
4-1设三铰拱的为拱轴线方程为24()fyxlxl,拱的尺寸及承受的荷载如图所示。试求支反力及D、E截面的内力。CAYA=5kN4m4mHA=30kN题4-1(b)(a)BHB=30kNYB=35kN4m4m4mDE40kN80kN·m4mD80kN·mYA=5kN4m4mAE40kNYB=35kN4mBCoo解:(1)画出三铰拱的等代梁,求三铰拱的约束反力000535120ABCYYMkN,kN,kNm故,000120535304CAABBABMYYYYHHfkN,kN,kN00005420(,5480100(,5DADCDADCMMVVkNm)kNm)kN0000354140(,35,5EBECEBECMMVVkNm)kNkN(2)计算D、E截面的内力因为拱轴线方程为24()fyxlxl,故,24(2)tanfylxl,21cos,sincos1()yy①计算D截面的内力2444(164)3(16Dym)2441(1624)tan162DDy22112121cos,sincos1()1(1/2)2555DDDDyy。故,00002030370(,10030310(21cossin555512sincos5555DADADDCDCDDADCDADDDADCDADDMMHyMMHyVVVHNNVHkNm)kNm)-30=-4=-8.94(kN)-30=-13=-29.07(kN)②计算E截面的内力24412(1612)3(16Dym)2441(16212)tan162EEy22112121cos,sincos1()1(1/2)2555EDDEyy0000014030350(,21cossin35(55521cossin5(55512sincos(35)(55sinEBECEBEEBEBEEECECEEEBEBEEECECEMMMHyVVHVVHNVHNVHkNm)-30)=-8=-17.89(kN)-30)=8=17.89(kN))-30=-42.49(kN)12cos5(55E)-30=-24.60(kN)4-2如图所示半圆弧三铰拱,左半跨承受水平竖向荷载。试求K截面的内力。CABYA=30kNYB=10kN4m4m4mK45oHA=10kNHB=10kNCABYA=30kNYB=10kN4m4mK10kN/m10kN/mooAYA=30kNK10kN/mHA=10kNVKNKMK题4-2(b)(a)(c)解:(1)画出三铰拱的等代梁,求三铰拱的约束反力000301040ABCYYMkN,kN,kNm故,000403010104CAABBABMYYYYHHfkN,kN,kN(2)取脱离体如图(c)所示,计算K截面的内力244cos4530(44cos45)104sin4510(44cos45)230(422)2025(422)0KM222301010(422)222201025.86(kN)222301010(422)22220(kN)KKVN4-4:试求图示拉杆三铰刚架拉杆的内力,并作刚架的内力图。VBCBDAYAYEBCDE4m4m2m4m12kN/m++-+-0887.1628.6214.31+-1212.5-1.7923.3--368M图(kN·m)V图(kN)N图(kN)322432YECDE12kN/mNEAYCXC题4-4120(a)(b)(c)12kN/m32kN·mVCDNCD(e)28.62kN23.3kNDnττnNBC12kN8kNVDC(d)nNDC36kN8kN解:(1)研究整个刚架,受力如图所示(a),列平衡方程求的约束反力12kN,36kN,0AEAYYH(2)研究刚架CDE,受力如图所示(b),对C铰取矩列平衡方程求的拉杆的轴力()01242364608kNCEAEAMFNN(3)作刚架的内力图①因铰不承受弯矩,故0ACEMMM32kNm()32kNm()DEDCBABCMMMM外拉外拉②求各杆端轴力、剪力1)研究立柱的轴力、剪力8kN8kN36kN12kNEDEABADEBAVVVVNN,,2)研究刚结点B的平衡,受力如图(c)所示,列平面汇交力系的平衡方程,得:012.52kN7.16kN0BCBCnNV,由于BC段无荷载作用,故:12.52kN7.16kNCBBCCBBCNNVV,4)研究刚结点D的平衡,受力如图(d)所示,列平面汇交力系的平衡方程,得:023.3kN28.62kN0DCDCnNV,再研究DC杆段的平衡,受力如图(e)所示,列平面任意力系的平衡方程,得:0()0DnMF1.79kN14.31kNCDCDNV,4-5设三铰拱的跨度为l,矢高为f,右半跨承受水平竖向均布荷载,试确定合理拱轴线。Bql/2YA=ql/8CAfYB=3ql/8l/2Bl/2YAAYBl/2=ql/8=3ql/8ooqC题4-2(a)(b)(1)画出三铰拱的等代梁,求三铰拱的约束反力200038816ABCqlqlqlVVM,,故,0216CABMqlHHHff(2)等代梁的弯矩方程为:2082()1()8222qlxlxMxqlxllqxxl(3)求合理拱轴线()MxyH则合理拱轴线方程为222202()2(45)2flxxlMxflxlxlxll
本文标题:建筑力学第四章答案
链接地址:https://www.777doc.com/doc-2460106 .html