您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 建筑材料 > 建筑材料09第五章02
第五章(2)21、和易性的概念2、掌握和易性的因素重点、难点:影响和易性因素及措施课堂讲授第二节混凝土拌合物的和易性一、和易性的概念二、和易性的测定三、影响和易性的因素四、改善和易性的措施练习本教学过程:一、混凝土和易性的概念:新拌混凝土的和易性,也称工作性,是指拌合物易于搅拌、运输、浇捣成型,并获得质量均匀密实的混凝土的一项综合技术性能。通常用流动性、粘聚性和保水性三项内容表示。流动性是指拌合物在自重或外力作用下产生流动的难易程度;粘聚性是指拌合物各组成材料之间不产生分层离析现象;保水性是指拌合物不产生严重的泌水现象。通常情况下,混凝土拌合物的流动性越大,则保水性和粘聚性越差,反之亦然,相互之间存在一定矛盾。和易性良好的混凝土是指既具有满足施工要求的流动性,又具有良好的粘聚性和保水性。因此,不能简单地将流动性大的混凝土称之为和易性好,或者流动性减小说成和易性变差。良好的和易性既是施工的要求也是获得质量均匀密实混凝土的基本保证。二、和易性的测试和评定:混凝土拌合物和易性是一项极其复杂的综合指标,到目前为止全世界尚无能够全面反映混凝土和易性的测定方法,通常通过测定流动性,再辅以其他直观观察或经验综合评定混凝土和易性。流动性的测定方法有坍落度法、维勃稠度法、探针法、斜槽法、流出时间法和凯利球法等十多种,对普通混凝土而言,最常用的是坍落度法和维勃稠度法。(1)坍落度法:将搅拌好的混凝土分三层装入坍落度筒中(见图4-5a),每层插捣25次,抹平后垂直提起坍落度筒,混凝土则在自重作用下坍落,以坍落高度(单位mm)代表混凝土的流动性。坍落度越大,则流动性越好。粘聚性通过观察坍落度测试后混凝土所保持的形状,或侧面用捣棒敲击后的形状判定,如图4-5所示。当坍落度筒一提起即出现图中(c)或(d)形状,表示粘聚性不良;敲击后出现(b)状,则粘聚性好;敲击后出现(c)状,则粘聚性欠佳;敲击后出现(d)状,则粘聚性不良。保水性是以水或稀浆从底部析出的量大小评定(见图4-5b)。析出量大,保水性差,严重时粗骨料表面稀浆流失而裸露。析出量小则保水性好。图4-5混凝土拌合物和易性测定根据坍落度值大小将混凝土分为四类:①大流动性混凝土:坍落度≥160mm;②流动性混凝土:坍落度100~150mm;③塑性混凝土:坍落度50~90mm;④干硬性混凝土:坍落度10~40mm坍落度法测定混凝土和易性的适用条件为:a.粗骨料最大粒径≤40mm;b.坍落度≥10mm。对坍落度小于10mm的干硬性混凝土,坍落度值已不能准确反映其流动性大小。如当两种混凝土坍落度均为零时,但在振捣器作用下的流动性可能完全不同。故一般采用维勃稠度法测定。(2)维勃稠度法:坍落度法的测试原理是混凝土在自重作用下坍落,而维勃稠度法则是在坍落度筒提起后,施加一个振动外力,测试混凝土在外力作用下完全填满面板所需时间(单位:秒)代表混凝土流动性。维勃稠度法测定混凝土和易性的适用条件为:a.粗骨料最大粒径≤40mm;b.维勃稠度在5~30s之间的混凝土拌合物的稠度测定。根据维勃稠度值大小将混凝土分为四类:①超干硬性混凝土:维勃稠度≥31s;②特干硬性混凝土:维勃稠度30~21s;③干硬性混凝土:维勃稠度20~11s;④半干硬性混凝土:维勃稠度10~5s时间越短,流动性越好;时间越长,流动性越差。见示意图4-6。图4-6维勃稠度试验仪1.容器;2.坍落度筒;3.圆盘;4.滑棒;5.套筒;6.13.螺栓;7.漏斗;8.支柱;9.定位螺丝;10.荷重;11.元宝螺丝;12.旋转架(3)坍落度的选择原则:实际施工时采用的坍落度大小根据下列条件选择。①构件截面尺寸大小:截面尺寸大,易于振捣成型,坍落度适当选小些,反之亦然。②钢筋疏密:钢筋较密,则坍落度选大些。反之亦然。③捣实方式:人工捣实,则坍落度选大些。机械振捣则选小些。④运输距离:从搅拌机出口至浇捣现场运输距离较远时,应考虑途中坍落度损失,坍落度宜适当选大些,特别是商品混凝土。⑤气候条件:气温高、空气相对湿度小时,因水泥水化速度加快及水份挥发加速,坍落度损失大,坍落度宜选大些,反之亦然。一般情况下,坍落度可按表4-11选用。表4-11混凝土浇筑时的坍落度(mm)构件种类坍落度基础或地面等的垫层、无配筋的大体积结构(挡土墙、基础10~30等)或配筋稀疏的结构板、梁和大型及中型截面的柱子等30~50配筋密列的结构(薄壁、斗仓、简仓、细柱等)50~70配筋特密的结构70~90三、影响和易性的主要因素:1、单位用水量的影响:单位用水量是混凝土流动性的决定因素。用水量增大,流动性随之增大。但用水量大带来的不利影响是保水性和粘聚性变差,易产生泌水分层离析,从而影响混凝土的匀质性、强度和耐久性。大量的实验研究证明在原材料品质一定的条件下,单位用水量一旦选定,单位水泥用量增减50~100kg/m3,混凝土的流动性基本保持不变,这一规律称为固定用水量定则。这一定则对普通混凝土的配合比设计带来极大便利,即可通过固定用水量保证混凝土坍落度的同时,调整水泥用量,即调整水灰比,来满足强度和耐久性要求。在进行混凝土配合比设计时,单位用水量可根据施工要求的坍落度和粗骨料的种类、规格,根据JGJ55-2000《普通混凝土配合比设计规程》按表4-12选用,再通过试配调整,最终确定单位用水量。表4-12混凝土单位用水量选用表项目指标卵石最大粒径(mm)碎石最大粒径(mm)102031.540162031.540坍落度(mm)10~3019017016015020018517516535~5020018017016021019518517555~7021019018017022020519518575~90215195185175230215205195维勃稠度(s)16~20175160-145180170-15511~15180165-150185175-1605~10185170-155190180-165注:1.本表用水量系采用中砂时的平均取值,如采用细砂,每立方米混凝土用水量可增加5~10kg,采用粗砂时则可减少5~10kg。2.掺用各种外加剂或掺合料时,可相应增减用水量。3.本表不适用于水灰比小于0.4时的混凝土及采用特殊成型工艺的混凝土。2、浆骨比的影响:浆骨比:指水泥浆用量与砂石用量之比值。在混凝土凝结硬化之前,水泥浆主要赋予流动性;在混凝土凝结硬化以后,主要赋予粘结强度。在水灰比一定的前提下,浆骨比越大,即水泥浆量越大,混凝土流动性越大。通过调整浆骨比大小,既可以满足流动性要求,又能保证良好的粘聚性和保水性。浆骨比不宜太大,否则易产生流浆现象,使粘聚性下降。浆骨比也不宜太小,否则因骨料间缺少粘结体,拌合物易发生崩塌现象。因此,合理的浆骨比是混凝土拌合物和易性的良好保证。3、水灰比的影响:水灰比:即水用量与水泥用量之比。在水泥用量和骨料用量不变的情况下,水灰比增大,相当于单位用水量增大,水泥浆很稀,拌合物流动性也随之增大,反之亦然。用水量增大带来的负面影响是严重降低混凝土的保水性,增大泌水,同时使粘聚性也下降。但水灰比也不宜太小,否则因流动性过低影响混凝土振捣密实,易产生麻面和空洞。合理的水灰比是混凝土拌合物流动性、保水性和粘聚性的良好保证。4、砂率的影响:砂率:是指砂占砂石总重量的百分率。表达式为:式中:SP——砂率;S——砂子用量(kg);G——石子用量(kg)。砂率对和易性的影响非常显著。①对流动性的影响:在水泥用量和水灰比一定的条件下,由于砂子与水泥浆组成的砂浆在粗骨料间起到润滑和辊珠作用,可以减小粗骨料间的摩擦力,所以在一定范围内,随砂率增大,混凝土流动性增大。另一方面,由于砂子的比表面积比粗骨料大,随着砂率增加,粗细骨料的总表积增大,在水泥浆用量一定的条件下,骨料表面包裹的浆量减薄,润滑作用下降,使混凝土流动性降低。所以砂率超过一定范围,流动性随砂率增加而下降,见图4-7a。图4-7砂率与混凝土流动性和水泥用量的关系②对粘聚性和保水性的影响:砂率减小,混凝土的粘聚性和保水性均下降,易产生泌水、离析和流浆现象。砂率增大,粘聚性和保水性增加。但砂率过大,当水泥浆不足以包裹骨料表面时,则粘聚性反而下降。③合理砂率的确定:合理砂率:是指砂子填满石子空隙并有一定的富余量,能在石子间形成一定厚度的砂浆层,以减少粗骨料间的摩擦阻力,使混凝土流动性达最大值。或者在保持流动性不变的情况下,使水泥浆用量达最小值。如图4-7b。合理砂率的确定可根据上述两原则通过试验确定。在大型混凝土工程中经常采用。对普通混凝土工程可根据经验或根据JGJ55参照表4-13选用。表4-13混凝土砂率选用表水灰比(W/C)卵石最大粒径(mm)碎石最大粒径(mm)1020401620400.4026~3225~3124~3030~3529~3427~32注:①表中数值系中砂的选用砂率。对细砂或粗砂,可相应地减少或增大砂率;②本砂率适用于坍落度为10~60mm的混凝土。坍落度如大于60mm或小于10mm时,应相应增大或减小砂率;按每增大20mm,砂率增大1%的幅度予以调整。③只用一个单粒级粗骨料配制混凝土时,砂率值应适当增大;④掺有各种外加剂或掺合料时,其合理砂率值应经试验或参照其他有关规定选用;⑤对薄壁构件砂率取偏大值。5、水泥品种及细度的影响:水泥品种不同时,达到相同流动性的需水量往往不同,从而影响混凝土流动性。另一方面,不同水泥品种对水的吸附作用往往不等,从而影响混凝土的保水性和粘聚性。如火山灰水泥、矿渣水泥配制的混凝土流动性比普通水泥小。在流动性相同的情况下,矿渣水泥的保水性能较差,粘聚性也较差。同品种水泥越细,流动性越差,但粘聚性和保水性越好。6、温度和时间的影响:混凝土拌合物的流动性随温度的升高而降低,这是由于温度升高可加速水泥的水化,增加水分的蒸发,所发夏季施工时,为了保持一定的流动性应当提高拌合物的用水量。混凝土拌合物随时间的延长而变干稠。流动性降低。这是由于拌合物中一些水分被骨料吸收,另一些水分蒸发,一些水分与水泥水化反映变成水化产物结合水而至。7、骨料的影响:骨料的级配、颗粒形状、表面特征及粒径等均对拌和物的和易性有影响。一般来说,级配好的骨料其拌合物的流动性较大,粘聚性与保水性较好;表面光滑的骨料,如河砂、卵石,其拌合物流动性较大;骨料的粒径增大,总表面积减小,拌合物流动性就增大。卵石表面光滑,碎石粗糙且多棱角,因此卵石配制的混凝土流动性较好,但粘聚性和保水性则相对较差。河砂与山砂的差异与上述相似。对级配符合要求的砂石料来说,粗骨料粒径越大,砂子的细度模数越大,则流动性越大,但粘聚性和保水性有所下降,特别是砂的粗细,在砂率不变的情况下,影响更加显著。8、外加剂的影响:外加剂对拌合物的和易性有较大影响。加入减水剂和引气剂可明显提高拌合物的流动性,引起剂还可有效的改善拌合物的粘聚性和保水性。
本文标题:建筑材料09第五章02
链接地址:https://www.777doc.com/doc-2461546 .html