您好,欢迎访问三七文档
偏振光(polarizedlight):振动方向对于传播方向的不对称性叫做偏振。光矢量振动方向即电场强度矢量方向。对于偏振光而言,可以分为三大类七种.一是完全偏振光,包括线偏振光、圆偏振光和椭圆偏振光二是非偏振光,即自然光三是部分偏振光,包括线偏振光+自然光、圆偏振光+自然光和椭圆偏振光+自然光完全偏振光:可看做振动方向正交,相位差恒定的两个同频率的平面偏振光的合成(a)线偏振光(平面偏振光)光矢量端点的轨迹为直线,即光矢量只沿着一个确定的方向振动,其大小随相位变化、方向不变,称为线偏振光。(b)椭圆偏振光光矢量端点的轨迹为一椭圆,即光矢量不断旋转,其大小、方向随时间有规律的变化。(c)圆偏振光光矢量端点的轨迹为一圆,即光矢量不断旋转,其大小不变,但方向随时间有规律地变化。迎着光的传播方向看:顺时针右旋,逆时针左旋。部分偏振光可看做振动方向正交,相位各自独立的两个同频率的平面偏振光的合成在垂直于光传播方向的平面上,含有各种振动方向的光矢量,但光振动在某一方向更显著,不难看出,部分偏振光是自然光和完全偏振光的叠加。相位延迟:电路中,相位延迟就是第二个个信号的相位相对第一个延迟,简单的说就是迟到由于光的频率极高,其具体相位是无法测量的,能够测量的只是一个光信号相对于另一个光信号的相位差。测量是通过把两束光在空间上的同一位置叠加来实现的,通常如果两束光经过了相同的路径而来到空间的同一点而叠加,其相位是相同的,因此互相增强,但在通过二相性物质的情况下两束光由于其振动方向与物质光轴垂直和平行不同而具有不同的折射率,因此在经过该二相物质以后两个振动方向不同的光产生了相位差,相位差会随着在光在二相物质中传播距离的不同而在0~2π间连续变化,通过继续增加一个偏振片,可以将经过二相物质后的两个振动方向的光束归并到同一振动方向上并产生相干(振动方向相互垂直的光是不能相互干涉的),此时空间中不同位置的光强会根据两光束相位差的不同呈现明暗变化。考虑到相位的相对性,假设我们将其中一束光作为基准,认为其相位不变,则可认为另一束光相对基准光发生了相位延迟。波片晶片中的o光和e光沿同一方向传播,但传播速度不同(折射率不同),穿出晶片后两种光间产生(n0-ne)d光程差,d为晶片厚度,n0和ne为o光和e光的折射率,两垂直振动间的相位差为Δj=2π(n0-ne)d/λ。两振动一般合成为椭圆偏振。Δj=kπ(k为整数)时合成为线偏振光;Δj=(2k+1)π/2,且θ=45°时合成为圆偏振光。凡能使o光和e光产生λ/4附加光程差的波片称为四分之一波片。若以线偏振光入射到四分之一波片,且θ=45°,则穿出波片的光为圆偏振光;反之,圆偏振光通过四分之一波片后变为线偏振光。静电力是电子与电子间的作用力;非静电力指其它力,如重力,摩擦力等。电源内使正、负电荷分离,并使正电荷聚积到电源正极,负电荷聚积到电源负极的非静电性质[1]的作用。除静电力外的其它力都属于非静电力。非静电力使电源两极间产生并维持一定的电势差。当电源两极与电路(例如导体)接通后,在静电力推动下,正电荷从电源正极经电路移至负极,电势降低;在电源内部,非静电力克服静电力的阻碍,使正电荷又从负极经电源内部移至正极,从而形成电荷流动的回路。因此,静电力和非静电力是构成电流回路的两个必要因素。非静电力是指除静电力外能对电荷流动起作用的力,并非泛指静电力外的一切作用力。例如引力就不是非静电力,因为它对电荷流动无作用。非静电力有不同的来源。在化学电池(干电池、蓄电池)中,非静电力是一种与离子的溶解和沉积过程相联系的化学作用;在温差电源中,非静电力是一种与温度差和电子浓度差相联系的扩散作用;在一般发电机中,非静电力起源于磁场对运动电荷的作用,即洛伦兹力。变化磁场产生的有旋电场也是一种非静电力,但因其力线呈涡旋状,通常不用作电源,也难以区分内外。电动势的方向规定为从电源的负极经过电源内部指向电源的正极,即与电源两端电压的方向相反电动势与电势差(电压)是容易混淆的两个概念。电动势是表示非静电力把单位正电荷从负极经电源内部移到正极所做的功与电荷量的比值;而电势差则表示静电力把单位正电荷从电场中的某一点移到另一点所做的功与电荷量的比值。它们是完全不同的两个概念。虽然电动势与电势差(电压)有区别,但电动势和电势差一样都是标量。对于给定的电源来说,不管外电阻是多少,电源的电动势总是不变的,而电源的路端电压则是随着外电阻的变化而变化的,它是表征外电路性质的物理量。电动势和电压虽然具有相同的单位,但它们是本质不同的两个物理量。(1)它们描述的对象不同:电动势是电源具有的,是描述电源将其他形式的能量转化为电能本领的物理量,电压是反映电场力做功本领的物理量[11]。(2)物理意义不同:电动势在数值上等于将单位电量正电荷从电源负极移到正极的过程中,其他形式的能量转化成的电能的多少;而电压在数值上等于移动单位电量正电荷时电场力作的功,就是将电能转化成的其他形式能量的多少。它们都反映了能量的转化,但转化的过程是不一样的[产生感生电动势时,导体或导体回路不动,而磁场变化。因此产生感生电动势的原因不可能是洛伦兹力。变化磁场产生了有旋电场,有旋电场对回路中电荷的作用力是一种非静电力,它引起了感生电动势,即如图式子中E旋是有旋电场的场强,即单位正电荷所受有旋电场的作用力。电感电感是闭合回路的一种属性,是一个物理量。当线圈通过电流后,在线圈中形成磁场感应,感应磁场又会产生感应电流来抵制通过线圈中的电流。这种电流与线圈的相互作用关系称为电的感抗,也就是电感,单位是“亨利(H)”,以美国科学家约瑟夫·亨利命名。它是描述由于线圈电流变化,在本线圈中或在另一线圈中引起感应电动势效应的电路参数。电感是自感和互感的总称。提供电感的器件称为电感器。导体的一种性质,用导体中感生的电动势或电压与产生此电压的电流变化率之比来量度。稳恒电流产生稳定的磁场,不断变化的电流(交流)或涨落的直流产生变化的磁场,变化的磁场反过来使处于此磁场的导体感生电动势。感生电动势的大小与电流的变化率成正比。比例因数称为电感,以符号L表示,单位为亨利(H)。[2]电感是闭合回路的一种属性,即当通过闭合回路的电流改变时,会出现电动势来抵抗电流的改变。这种电感称为自感(self-inductance),是闭合回路自己本身的属性。假设一个闭合回路的电流改变,由于感应作用而产生电动势于另外一个闭合回路,这种电感称为互感(mutualinductance)。自感当线圈中有电流通过时,线圈的周围就会产生磁场。当线圈中电流发生变化时,其周围的磁场也产生相应的变化,此变化的磁场可使线圈自身产生感应电动势(感生电动势)(电动势用以表示有源元件理想电源的端电压),这就是自感。互感两个电感线圈相互靠近时,一个电感线圈的磁场变化将影响另一个电感线圈,这种影响就是互感。互感的大小取决于电感线圈的自感与两个电感线圈耦合的程度,利用此原理制成的元件叫做互感器。电感符号:L电感单位:亨(H)、毫亨(mH)、微亨(μH),换算关系为:1H=10mH=10μH=10nH。公式:一个通有电流为I的线圈(或回路),其各匝交链的磁通量的总和称作该线圈的磁链ψ。如果各线匝交链的磁通量都是Φ,线圈的匝数为N,则线圈的磁链ψ=NΦ。线圈电流I随时间变化时,磁链Ψ也随时间变化。根据电磁感应定律,在线圈中将感生自感电动势EL,其值为定义线圈的自感L为自感电动势eL和电流的时间导数dI/dt的比值并冠以负号,即以上二式中,ψ和eL的正方向,以及ψ和I的正方向都符合右手螺旋规则。已知电感L,就可以由dI/dt计算自感电动势。此外,自感还可定义如下
本文标题:对于偏振光而言
链接地址:https://www.777doc.com/doc-2465661 .html