您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 工程监理 > 平面几何的简单知识点汇总,有需要的可以看看
连接直线外一点与直线上各点的所有线段中,垂线段最短。平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。①三角形两边之和大于第三边,故同时满足△ABC三边长a、b、c的不等式有:a+bc,b+ca,c+ab.②三角形两边之差小于第三边,故同时满足△ABC三边长a、b、c的不等式有:ab-c,ba-c,cb-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.③三角形的一个外角与与之相邻的内角互补①多边形的对角线2)3(nn条对角线;②n边形的内角和为(n-2)×180°;③多边形的外角和为360°角平分线的性质及判定性质:角平分线上的点到这个角的两边的距离相等判定:到一个角的两边距离相等的点在这个角平分线上勾股定理1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2.即直角三角形两直角边的平方和等于斜边的平方勾:直角三角形较短的直角边股:直角三角形较长的直角边弦:斜边勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。2.勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)*附:常见勾股数:3,4,5;6,8,10;9,12,15;5,12,133.判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)其他方法:(1)有一个角为90°的三角形是直角三角形。(2)有两个角互余的三角形是直角三角形。用它判断三角形是否为直角三角形的一般步骤是:(1)确定最大边(不妨设为c);(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)4.注意:(1)直角三角形斜边上的中线等于斜边的一半(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。5.勾股定理的作用:(1)已知直角三角形的两边求第三边。(2)已知直角三角形的一边,求另两边的关系。(3)用于证明线段平方关系的问题。(4)利用勾股定理,作出长为n的线段6.勾股定理的证明勾股定理的证明方法很多,常见的是拼图的方法圆1、圆的定义:(1)在一个平面内线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。(2)圆是所有点到定点O的距离等于定长r的点的集合。注意:确定一个圆有2个元素,一个是圆心,一个是半径,圆心确定圆的位置,半径确定圆的大小。2、和圆相关的概念:(1)弦:连结圆上任意两点的线段;(弦不一定是直径,直径一定是弦,直径是圆中最长的弦)(2)直径:经过圆心的弦;(3)弧:圆上任意两点间的部分;(弧的度数等于这条弧所对的圆心角的度数,等于这条弧所对圆周角的两倍)(4)半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆;(5)优弧:大于半圆的弧,用三个大写字母表示;(6)劣弧:小于半圆的弧,用两个大写字母表示;(7)弓形由弦及其所对的弧组成的图形;(8)等圆:能够重合的两个圆;(9)等弧:在同圆或等圆中,能够互相重合的弧;(10)同心圆:圆心相同,半径不相等的两个圆;cbaHGFEDCBAbacbaccabcababccbaEDCBA(11)圆心角:定点是圆心的角;(12)圆周角:顶点在圆上,并且两边都和圆相交的角;(13)弦心距:圆心到弦的距离。注意:(1)直径等于半径的2倍;(2)同圆或等圆的半径相等;(3)等弧必须是同圆或等圆中的弧;(4)弧长相等的弧不一定是等弧,但等弧的弧长必相等。3、圆心角的定义及性质:(1)圆心角的定义:定点是圆心的角叫做圆心角。(2)圆心角、弦、弧的有关定理:①在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等;②在同圆或等圆中,如果两条弧相等,那么这两条弧所对的圆心角相等,所对的弦相等;③在同圆或等圆中,如果两条弦相等,那么这两条弦所对的圆心角相等,所对的弧相等。4、圆周角的定义及性质:(1)圆周角的定义:顶点在圆上,并且两边都和圆相交的角叫做圆周角。注意:圆周角必须具备两个条件:①顶点在圆上;②角的两边都和圆相交,二者缺一不可;圆周角和圆心角的①相同点:两边都和圆相交;②不同点:圆心角的顶点在圆心;圆周角的顶点在圆上。(2)圆周角的性质:①一条弧所对的圆周角等于该弧所对的圆心角的一半;②在同圆或等圆中,同弧(或等弧)所对的圆周角相等;③在同圆或等圆中,相等的圆周角所对的弧相等;④半圆或直径所对的圆周角都相等,都等于90°(直角);⑤90°的圆周角所对的弦是圆的直径,所对的弧是半圆;⑥如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。5、垂径定理与推理:(1)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧。注意:这个结论中涉及圆中不是直径的弦与直径所在直线的关系,如果圆的一条非直径的弦和一条直线满足以下五个条件中的任意两个,那么它一定满足其余三个:①直线过圆心;②直线垂直于弦;③直线平分弦;④直线平分弦所对的劣弧;⑤直线平分弦所对的优弧,也可简单地理解为“二推三”。(2)垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。6、圆的对称性:(1)圆既是中心对称图形,又是轴对称图形。注意:圆具有旋转不变性,有无数条对称轴。(2)在同圆或等圆中,圆心角、弧、弦、弦心距之间的关系:在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两弦的弦心距中,有一组量相等,那么它们所对应的其余各组量也分别相等。注意:运用本知识时应注意其成立的条件:“在同圆或等圆中”,也可简单地理解为“一推三”。7、点与圆的位置关系:点与圆有三种位置关系:点在圆外、点在圆上、点在圆内。设⊙O的半径为r,点到圆心O的距离为d,则有:点在圆外↔d>r;点在圆上↔d=r;点在圆内↔d<r。注意:可以根据点到圆心的距离与圆的半径的大小比较来确定点与圆的位置关系。8、确定圆的条件:过一个点可以作无数个圆;过两个点可以作无数个圆,这些圆的圆心在连接这两个点的线段的垂直平分线上;过在同一条直线上的三个点不能作圆;过不在同一直线上的三个点可确定一个圆。9、三角形的外接圆及外心:经过三角形各顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做这个圆的内接三角形。注意:(1)三角形的外心是三角形三边的垂直平分线的交点;三角形的外心到三角形三个顶点的距离相等,任何三角形有且只有一个外接圆,任何一个圆有无数个内接三角形;(2)锐角三角形的外心在三角形的内部;直角三角形的外心是斜边的中点,外接圆的半径等于斜边的一半;钝角三角形的外心在三角形的外部。10、圆的内接四边形:如果一个四边形的各个顶点都在同一个圆上,这个四边形叫做圆的内接四边形,这个圆叫做这个四边形的外接圆。定理:圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角。注意:圆的内接平行四边形是矩形;圆的内接梯形是等腰梯形。11、直线与圆的位置关系:相交、相切、相离。(1)直线和圆有两个公共点时,叫做直线与圆相交,这时直线叫做圆的割线;(2)直线和圆有唯一公共点时,叫做直线与圆相切,这时直线叫做圆的切线,唯一的公共点叫做切点;(3)直线和圆没有公共点时,叫做直线与圆相离。若⊙O的半径为r,圆心O到直线l的距离为d,则直线与圆的位置关系、交点个数及d与r的数量关系如下表:直线与圆的位置关系相离相切相交交点个数012d与r数量关系d>rd=r0≤d<r注意:可以根据圆心到直线的距离d与圆的半径r的大小比较来判定直线与圆的位置关系。12、切线的判定与性质:(1)切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线。切线必须满足两个条件:①经过半径的外端;②垂直于这条半径。两个条件缺一不可。注意:在判定直线与圆相切时,若直线与圆的公共点已知,证题方法是“连半径,证垂直”;若直线与圆的公共点未知,证题方法是作垂线,证半径。这两种情况可概括为一句话:“有点连半径,无点作垂线”。(2)切线的性质定理:圆的切线垂直于经过切点的半径。推论:①经过圆心且垂直于切线的直线必经过切点;②经过切点且垂直于切线的直线必经过圆心。注意:圆的切线性质定理与它的两个推论涉及了一条直线的三条性质:①垂直于切线;②过圆心;③过切点。如果一条直线满足以上三个条件中的任意两个,那它一定满足另外一个条件,也可以简单地理解为“二推一”。13、三角形的内切圆和内心:(1)定义:与三角形三边都相切的圆叫做三角形的内切圆,内切圆的圆心叫做三角形的内心,这个三角形叫做圆的外切三角形。(2)性质:三角形的内心是三角形三内角的角平分线的交点,三角形的内心到三角形三边的距离相等。注意:任意三角形有且只有一个内切圆,内心一定在三角形内,任意一个圆有无数个外切三角形;如果三角形三边长分别为a、b、c,内切圆半径为r,则三角形的面积S=½(a+b+c)r。14、切线长定理:(1)定义:在经过圆外一点的切线上,这点和切点之间的线段的长,叫做这点到圆的切线长。(2)定理:从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。注意:圆的外切四边形的两组对边的和相等。15、圆与圆的位置关系:在平面内,两圆做相对运动,可以得到下面不同的位置关系:(1)两圆外离:两个圆没有公共点,并且每个圆上的点都在另一个圆的外部;(2)两圆外切:两圆有唯一的公共点,并且除了这个公共点以外,每个圆上的点都在另一个圆的外部;(3)两圆相交:两圆有两个公共点;(4)两圆内切:两圆有唯一的公共点,并且除了这个公共点以外,一个圆上的点都在另一个圆的内部;(5)两圆内含:两圆没有公共点,并且一个圆上的点都在另一个圆的内部;(6)同心圆:两圆同心是两圆内含的一种特例。16、两圆的位置关系、数量关系及识别方法:设两圆的半径分别为R和r,圆心距(圆心之间的距离)为d。位置关系公共点个数R、r与d的关系公切线条数外离0d>R+r4外切1d=R+r3相交2R-r<d<R+r2内切1d=R-r1内含00≤d<R-r0注意:(1)上表中,两圆内含时,如果d=0,则来那个圆同心,这是内含的一种特殊情况;(2)上表中的形与数、数与数均可作等价转换;(3)两圆公共点个数为0时要分内含与外离两种情况;两圆公共点个数为1时要分内切与外切两种情况。17、两圆相交的性质:相交两圆的连心线垂直平方两圆的公共弦。注意:在题目的已知条件中,若有“两圆相交”的条件时,常常作两圆的公共弦,通过公共弦使之出现同弧上的圆周角或构成圆内接四边形进而沟通两圆中角之间的关系。18、两圆相切的性质:如果两圆相切,那么切点一定在连心线上。注意:在题目已知条件中,若有“两圆相切”的条件时,经常过切点作两圆的公切线,这样通过弦切角沟通两圆中角之间的关系。19、弧长的计算:(1)圆周长公式:C=2πR(R为圆的半径)(2)弧长公式:l=2πRn/360°=πRn/180(n为弧所对的圆心角度数,不带单位,R为圆的半径)20、扇形面积的计算:(1)扇形的定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。(2)圆的面积公式:S=πR2(R为圆的半径)(3)扇形的面积公式:S扇形=lR21(R为扇形所在圆的半径,l为扇形的弧长)注意:在运用扇形的面积公式时,应注意以下几点:(1)公式中的n与弧长公式中的n一样,n表示1°的圆心角的倍数,不带单位;(2)扇形面积公式S扇形=lR21与内切圆中的三角形面积公式十分类似;(3)根据扇形面积公式及弧长公式,已知S扇形、l
本文标题:平面几何的简单知识点汇总,有需要的可以看看
链接地址:https://www.777doc.com/doc-2489994 .html