您好,欢迎访问三七文档
学案16定积分及其简单的应用导学目标:1.以求曲边梯形的面积和汽车变速行驶的路程为背景准确理解定积分的概念.2.理解定积分的简单性质并会简单应用.3.会说出定积分的几何意义,能根据几何意义解释定积分.4.会用求导公式和导数运算法则,反方向求使F′(x)=f(x)的F(x),并运用牛顿—莱布尼茨公式求f(x)的定积分.5.会通过求定积分的方法求由已知曲线围成的平面图形的面积.6.能熟练运用定积分求变速直线运动的路程.7.会用定积分求变力所做的功.自主梳理1.定积分的几何意义:如果在区间[a,b]上函数f(x)连续且恒有f(x)≥0,那么函数f(x)在区间[a,b]上的定积分的几何意义是直线________________________所围成的曲边梯形的________.2.定积分的性质(1)ʃbakf(x)dx=__________________(k为常数);(2)ʃba[f1(x)±f2(x)]dx=_____________________________________;(3)ʃbaf(x)dx=_______________________________________.3.微积分基本定理一般地,如果f(x)是区间[a,b]上的连续函数,并且F′(x)=f(x),那么ʃbaf(x)dx=F(b)-F(a),这个结论叫做__________________,为了方便,我们常把F(b)-F(a)记成__________________,即ʃbaf(x)dx=F(x)|ba=F(b)-F(a).4.定积分在几何中的应用(1)当x∈[a,b]且f(x)0时,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积S=__________________.(2)当x∈[a,b]且f(x)0时,由直线x=a,x=b(a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积S=__________________.(3)当x∈[a,b]且f(x)g(x)0时,由直线x=a,x=b(a≠b)和曲线y=f(x),y=g(x)围成的平面图形的面积S=______________________.(4)若f(x)是偶函数,则ʃa-af(x)dx=2ʃa0f(x)dx;若f(x)是奇函数,则ʃa-af(x)dx=0.5.定积分在物理中的应用(1)匀变速运动的路程公式做变速直线运动的物体所经过的路程s,等于其速度函数v=v(t)[v(t)≥0]在时间区间[a,b]上的定积分,即________________________.(2)变力做功公式一物体在变力F(x)(单位:N)的作用下做直线运动,如果物体沿着与F相同的方向从x=a移动到x=b(ab)(单位:m),则力F所做的功W=__________________________.自我检测1.计算定积分ʃ503xdx的值为()A.752B.75C.252D.252.定积分ʃ10[1-x-12-x]dx等于()A.π-24B.π2-1C.π-14D.π-123.如右图所示,阴影部分的面积是()A.23B.2-3C.323D.3534.(2010·湖南)ʃ421xdx等于()A.-2ln2B.2ln2C.-ln2D.ln25.若由曲线y=x2+k2与直线y=2kx及y轴所围成的平面图形的面积S=9,则k=________.探究点一求定积分的值例1计算下列定积分:(1)2111()exdxxx;(2)20sin2cos)xxdx(;(3)ʃπ0(2sinx-3ex+2)dx;(4)ʃ20|x2-1|dx.变式迁移1计算下列定积分:(1)ʃ2π0|sinx|dx;(2)ʃπ0sin2xdx.探究点二求曲线围成的面积例2计算由抛物线y=12x2和y=3-(x-1)2所围成的平面图形的面积S.变式迁移2计算曲线y=x2-2x+3与直线y=x+3所围图形的面积.探究点三定积分在物理中的应用例3一辆汽车的速度-时间曲线如图所示,求此汽车在这1min内所行驶的路程.变式迁移3A、B两站相距7.2km,一辆电车从A站开往B站,电车开出ts后到达途中C点,这一段速度为1.2tm/s,到C点时速度达24m/s,从C点到B点前的D点以匀速行驶,从D点开始刹车,经ts后,速度为(24-1.2t)m/s,在B点恰好停车,试求:(1)A、C间的距离;(2)B、D间的距离;(3)电车从A站到B站所需的时间.函数思想的应用例(12分)在区间[0,1]上给定曲线y=x2.试在此区间内确定点t的值,使图中的阴影部分的面积S1与S2之和最小,并求最小值.【答题模板】解S1面积等于边长为t与t2的矩形面积去掉曲线y=x2与x轴、直线x=t所围成的面积,即S1=t·t2-ʃt0x2dx=23t3.[2分]S2的面积等于曲线y=x2与x轴,x=t,x=1围成的面积去掉矩形面积,矩形边长分别为t2,1-t,即S2=ʃ1tx2dx-t2(1-t)=23t3-t2+13.[4分]所以阴影部分面积S=S1+S2=43t3-t2+13(0≤t≤1).[6分]令S′(t)=4t2-2t=4tt-12=0时,得t=0或t=12.[8分]t=0时,S=13;t=12时,S=14;t=1时,S=23.[10分]所以当t=12时,S最小,且最小值为14.[12分]【突破思维障碍】本题既不是直接求曲边梯形面积问题,也不是直接求函数的最小值问题,而是先利用定积分求出面积的和,然后利用导数的知识求面积和的最小值,难点在于把用导数求函数最小值的问题置于先求定积分的题境中,突出考查学生知识的迁移能力和导数的应用意识.1.定积分ʃbaf(x)dx的几何意义就是表示由直线x=a,x=b(a≠b),y=0和曲线y=f(x)围成的曲边梯形的面积;反过来,如果知道一个这样的曲边梯形的面积也就知道了相应定积分的值,如ʃ204-x2dx=π(半径为2的14个圆的面积),ʃ2-24-x2dx=2π.2.运用定积分的性质可以化简定积分计算,也可以把一个函数的定积分化成几个简单函数定积分的和或差.3.计算一些简单的定积分问题,解题步骤是:第一步,把被积函数变形为幂函数、正弦函数、余弦函数、指数函数与常数积的和或差;第二步,把定积分用定积分性质变形为求被积函数为上述函数的定积分;第三步,分别用求导公式找到一个相应的使F′(x)=f(x)的F(x);第四步,再分别用牛顿—莱布尼茨公式求各个定积分的值后计算原定积分的值.(满分:75分)一、选择题(每小题5分,共25分)1.下列值等于1的积分是()A.ʃ10xdxB.ʃ10(x+1)dxC.ʃ1012dxD.ʃ101dx2.(2011·汕头模拟)设函数f(x)=x2+1,0≤x≤1,3-x,1x≤2,则ʃ20f(x)dx等于()A.13B.176C.6D.173.已知f(x)为偶函数且ʃ60f(x)dx=8,则ʃ6-6f(x)dx等于()A.0B.4C.8D.164.(2011·深圳模拟)曲线y=sinx,y=cosx与直线x=0,x=π2所围成的平面区域的面积为()A.ʃπ20(sinx-cosx)dxB.2ʃπ40(sinx-cosx)dxC.ʃπ20(cosx-sinx)dxD.2ʃπ40(cosx-sinx)dx5.(2011·临渭区高三调研)函数f(x)=ʃx0t(t-4)dt在[-1,5]上()A.有最大值0,无最小值B.有最大值0,最小值-323C.有最小值-323,无最大值D.既无最大值也无最小值题号12345答案二、填空题(每小题4分,共12分)6.若1N的力使弹簧伸长2cm,则使弹簧伸长12cm时克服弹力做的功为__________J.7.ʃ10(2xk+1)dx=2,则k=________.8.(2010·山东实验中学高三三诊)若f(x)在R上可导,f(x)=x2+2f′(2)x+3,则ʃ30f(x)dx=________.三、解答题(共38分)9.(12分)计算以下定积分:(1)ʃ212x2-1xdx;(2)ʃ32x+1x2dx;(3)ʃπ30(sinx-sin2x)dx;(4)ʃ21|3-2x|dx.10.(12分)设y=f(x)是二次函数,方程f(x)=0有两个相等的实根,且f′(x)=2x-2.(1)求y=f(x)的表达式;(2)求y=f(x)的图象与两坐标轴所围成图形的面积.11.(14分)求曲线y=ex-1与直线x=-ln2,y=e-1所围成的平面图形的面积.答案自主梳理1.x=a,x=b(a≠b),y=0和曲线y=f(x)面积2.(1)kʃbaf(x)dx(2)ʃbaf1(x)dx±ʃbaf2(x)dx(3)ʃcaf(x)dx+ʃbcf(x)dx(其中acb)3.微积分基本定理F(x)|ba4.(1)ʃbaf(x)dx(2)-ʃbaf(x)dx(3)ʃba[f(x)-g(x)]dx5.(1)s=ʃbav(t)dt(2)ʃbaF(x)dx自我检测1.A2.A3.C4.D5.±3解析由y=x2+k2,y=2kx.得(x-k)2=0,即x=k,所以直线与曲线相切,如图所示,当k0时,S=ʃk0(x2+k2-2kx)dx=ʃk0(x-k)2dx=13(x-k)3|k0=0-13(-k)3=k33,由题意知k33=9,∴k=3.由图象的对称性可知k=-3也满足题意,故k=±3.课堂活动区例1解题导引(1)与绝对值有关的函数均可化为分段函数.①分段函数在区间[a,b]上的积分可分成几段积分的和的形式.②分段的标准是使每一段上的函数表达式确定,按照原函数分段的情况分即可,无需分得过细.(2)f(x)是偶函数,且在关于原点对称的区间[-a,a]上连续,则ʃa-af(x)dx=2ʃa0f(x)dx.解(1)ʃe1x+1x+1x2dx=ʃe1xdx+ʃe11xdx+ʃe11x2dx=12x2|e1+lnx|e1-1x|e1=12(e2-1)+(lne-ln1)-1e-11=12e2-1e+32.(2)ʃπ20(sinx-2cosx)dx=ʃπ20sinxdx-2ʃπ20cosxdx=(-cosx)|π20-2sinx|π20=-cosπ2-(-cos0)-2sinπ2-sin0=-1.(3)ʃπ0(2sinx-3ex+2)dx=2ʃπ0sinxdx-3ʃπ0exdx+ʃπ02dx=2(-cosx)|π0-3ex|π0+2x|π0=2[(-cosπ)-(-cos0)]-3(eπ-e0)+2(π-0)=7-3eπ+2π.(4)∵0≤x≤2,于是|x2-1|=x2-1,1x≤2,1-x2,0≤x≤1,∴ʃ20|x2-1|dx=ʃ10(1-x2)dx+ʃ21(x2-1)dx=x-13x3|10+13x3-x|21=2.变式迁移1解(1)∵(-cosx)′=sinx,∴ʃ2π0|sinx|dx=ʃπ0|sinx|dx+ʃ2ππ|sinx|dx=ʃπ0sinxdx-ʃ2ππsinxdx=-cosx|π0+cosx|2ππ=-(cosπ-cos0)+(cos2π-cosπ)=4.(2)ʃπ0sin2xdx=ʃπ012-12cos2xdx=ʃπ012dx-12ʃπ0cos2xdx=12x|π0-1212sin2x|π0=π2-0-1212sin2π-12sin0=π2.例2解题导引求曲线围成的面积的一般步骤为:(1)作出曲线的图象,确定所要求的面积;(2)联立方程解出交点坐标;(3)用定积分表示所求的面积;(4)求出定积分的值.解作出函数y=12x2和y=3-(x-1)2的图象(如图所示),则所求平面图形的面积S为图中阴影部分的面积.解方程组y=12x2,y=3-x-12,得x=-23,y=29或x=2,y=2.所以两曲线交点为A-23,29,B(2,2).所以S=ʃ2-23[3-(x-1)2]dx-ʃ2-23
本文标题:定积分导学案
链接地址:https://www.777doc.com/doc-2498934 .html