您好,欢迎访问三七文档
1一、教学目标:1.理解定积分的基本概念并能利用定积分的几何意义解决一些简单的积分计算问题.2.理解微积分的基本定理,并会用定积分公式解决简单函数的定积分问题.二、知识要点分析1.定积分的概念:函数)(xf在区间[a,b]上的定积分表示为:badxxf)(2.定积分的几何意义:(1)当函数f(x)在区间[a,b]上恒为正时,定积分badxxf)(的几何意义是:y=f(x)与x=a,x=b及x轴围成的曲边梯形面积,在一般情形下.badxxf)(的几何意义是介于x轴、函数f(x)的图象、以及直线x=a,x=b之间的各部分的面积代数和,在x轴上方的面积取正号,x轴下方的面积取负号.在图(1)中:0sdx)x(fba,在图(2)中:0sdx)x(fba,在图(3)中:dx)x(fba表示函数y=f(x)图象及直线x=a,x=b、x轴围成的面积的代数和.注:函数y=f(x)图象与x轴及直线x=a,x=b围成的面积不一定等于badxxf)(,仅当在区间[a,b]上f(x)恒正时,其面积才等于badxxf)(.3.定积分的性质,(设函数f(x),g(x)在区间[a,b]上可积)(1)bababadx)x(gdx)x(fdx)]x(g)x(f[(2)babadxxfkdxxkf)()(,(k为常数)(3)bcbacadxxfdxxfdxxf)()()((4)若在区间[a,b]上,badxxfxf0)(,0)(则推论:(1)若在区间[a,b]上,babadxxgdxxfxgxf)()(),()(则(2)babadxxfdxxf|)(||)(|(3)若f(x)是偶函数,则aaadxxfdxxf0)(2)(,若f(x)是奇函数,则0)(aadxxf4.微积分基本定理:一般地,若)()()(],[)(),()('aFbFdxxfbaxfxfxFba上可积,则在且2注:(1)若)()('xfxF则F(x)叫函数f(x)在区间[a,b]上的一个原函数,根据导数定义知:F(x)+C也是f(x)的原函数,求定积分badxxf)(的关键是求f(x)的原函数,可以利用基本初等函数的求导公式和导数的四则运算法则从反方向求F(x).(2)求导运算与求原函数的运算互为逆运算.【典型例题】知识点一:定积分的几何意义例1.根据200sinxdx推断:求直线x=0,x=2,y=0和正弦曲线y=sinx所围成的曲边梯形面积下列结论正确的是()A.面积为0B.曲边梯形在x轴上方的面积大于在x轴下方的面积C.曲边梯形在x轴上方的面积小于在x轴下方的面积D.曲边梯形在x轴上方的面积等于在x轴下方的面积题意分析:本题考查定积分的几何意义,注意dxx20sin与y=sinx及直线x=a,x=b和x轴围成的面积的区别.思路分析:作出函数y=sinx在区间[0,2]内的图象及积分的几何意义及函数的对称性可判断.解:对于(A):由于直线x=0,x=2,y=0和正弦曲线y=sinx所围成的曲边梯形面积为正可判断A错.对于(B),(C)根据y=sinx在[0,2]内关于()0,对称知两个答案都是错误的.根据函数y=sinx的图象及定积分的几何意义可知:答案(D)是正确的.解题后的思考:本题主要考查定积分的几何意义,体现了数与形结合的思想的应用,易错点是混淆函数y=sinx与x轴、直线x=0,x=2围成的面积等于20)(dxxf.例2.利用定积分的几何意义,说明下列等式的合理性(1)1210xdx(2)10241dxx.题意分析:本题主要考查定积分的几何意义:在区间[0,1]上函数y=2x,及y=21x恒为正时,定积分102xdx表示函数y=2x图象与x=0,x=1围成的图形的面积,dxx1021表3示函数y=21x图象与x=0,x=1围成的图形的面积.思路分析:分别作出函数y=2x及y=21x的图象,求此图象与直线x=0,x=1围成的面积.解:(1)在同一坐标系中画出函数y=2x的图象及直线x=0,x=1(如图),它们围成的图形是直角三角形.其面积S=11221.由于在区间[0,1]内f(x)恒为正,故1210xdx.(2)由]1,0[,11222xyxxy,故函数y21x(]1,0[x的图象如图所示,所以函数y21x与直线x=0,x=1围成的图形面积是圆122yx面积的四分之一,又y21x在区间[0,1]上恒为正.10241dxx解题后的思考:本题主要考查利用定积分的几何意义来验证函数y=2x及函数y=21x在区间[0,1]上的定积分的值,体现了数与形结合的思想的应用,易错点是画函数图象的不准确造成错误的结果.例3.利用定积分的几何意义求40|)3||1(|dxxx的值.题意分析:本题考查定积分的几何意义,40|)3||1(|dxxx的值是函数|3||1|xxy的图象与直线x=0,x=4所围成图形的面积.思路分析:首先把区间[0,4]分割为[0,1],[1,3],[3,4],在每个区间上讨论x-1,x-3的符号,把函数|3||1|xxy化为分段函数,再根据定积分的几何意义求40|)3||1(|dxxx的值.解:函数|3||1|xxy化为]4,3[(,42]3,1[(,2]1,0[(,42xxxxxy4由于函数]4,3[(,42]3,1[(,2]1,0[(,42xxxxxy在区间[0,1],[1,3],[3,4]都恒为正.设函数y=-2x+4的图象与直线x=0,x=1围成的面积为S1函数y=2的图象与直线x=1,x=3围成的面积是S2函数y=2x-4的图象与直线x=3,x=4围成的面积是S3由图知:S1=S3=,31)24(21S2=422由定积分的几何意义知:40|)3||1(|dxxx=10231SSS解题后的思考:本题考查的知识点是定积分的几何意义,利用其几何意义求定积分40|)3||1(|dxxx的值,体现了等价转化的数学思想(把区间[0,4]分割,把函数y=|x-1|+|x-3|化成分段函数)、数与形结合的思想的应用.易错点是:区间[0,4]分割不当及画函数图象不准确,造成错误的结果.当被积函数含有绝对值时,常采用分割区间把函数化为分段函数的方法求定积分的值.小结:本题主要考查定积分的几何意义,要分清在区间[a,b]上f(x)恒为正时,f(x)在区间[a,b]上定积分值才等于函数图象与直线x=a,x=b围成的面积.在画函数图象时注意x的取值区间.当被积函数含有绝对值时,恰当的分割区间把函数画为分段函数再求定积分的值.知识点二:定积分的计算例1.由直线21x,x=2,曲线xy1及x轴围成的面积是()A.415B.417C.2ln21D.2ln2题意分析:本题表面上考查定积分的几何意义,实质是考查定积分的基本运算,关键是理解所求图形面积是定积分dxx2211的值.思路分析:利用导数求出xxln1的原函数是.再利用微积分的基本定理求.解:xx1)(ln',dxx2211=2ln221ln2ln|ln221x.故选(D)解题后的思考:求定积分的值关键是求被积函数的原函数,可利用导数求被积函数的原函数,易错的地方是:求被积函数的原函数有误.例2.求下列定积分的值(1)10)32(dxx5(2)123)1(dxx(3)0)(cosdtett题意分析:本题考查定积分的基本计算,先直接求被积函数的原函数,再利用定积分的运算性质和微积分基本定理求定积分的值.思路分析:(1)利用导数求被积函数tetxxcos,1,323的原函数分别是t42etsin,x41x,x3x,再由微积分基本定理可求.解:(1)3x2)x3x('2,431|)3()32(10210xxdxx(2)34x1)'x41x(427]4)2(2[)411(|)41()1(4121243xxdxx(3)t'tetcos)et(sin,00t00ttdtetdtsin|)et(sindt)et(cos=e11|e|xsin0t0解题后的思考:本题是定积分的简单的运算,解题的关键是求被积函数的原函数,能利用求导的方法求原函数,体现了等价转化的数学思想的应用.易错点是求原函数.要注意定积分运算法则的应用.例3.求下列定积分的值(1)2022sindxx(2)3)6cos(dxx题意分析:本题仍是定积分的运算,被积函数不是我们学过的基本初等函数,要把被积函数转化为基本的初等函数.思路分析:利用三角函数的降幂公式把被积函数化为:2sin)cos1(212xx,利用余弦的差角公式把被积函数化为:xxxsin21cos23)6cos(,再利用定积分的运算法则及微积分的基本原理求.解:(1)2022sindxx=202cos1dxx=2120)cos1(dxx=2020)cos(21xdxdx6=42)12(21)|sin|(212020xx(2)3)6cos(dxx=3)sin21cos23(dxxx=33sin21cos23dxxxdx=0)3cos(cos213sin23|cos21|sin2333xx解题后思考:本题的解题关键是求被积函数的原函数,利用求导数的方法求原函数,若被积函数不是初等函数要转化为基本的初等函数,这样便于利用导数求原函数,其中体现等价转化的数学思想的应用.小结:本题组主要是考查定积分的计算,求被积函数的原函数是解题的关键,要熟练的掌握导数的运算法则、公式便于求被积函数的原函数,同时对较复杂的被积函数要转化为基本的初等函数.同时注意定积分的运算的性质、法则的应用.会给解题带来很大的方便.【本讲涉及的数学思想、方法】:本讲主要讲述定积分的几何意义及定积分的基本运算,在考查定积分几何意义的知识点上体现了数与形相结合数学思想的应用,在定积分的运算过程中体现了等价转化的数学思想的应用.【模拟试题】(答题时间:60分钟,满分60分)一、选择题(每题5分,计30分)1.设连续函数f(x)0恒成立,则当ab时,定积分baxf)(的符号是()A.一定是正的B.一定是负的C.当0ab时是正的,当ab0时是负的D.以上都不对2.若kdxxx02,0)32(则k=()A.0B.1C.0或1D.以上都不对3.与定积分30cos1dxx相等的是()A.302sin2dxxB.30|2sin|2dxxC.|2sin|230dxxD.以上都不对.4.20)sin3(dxxx=()A.1832B.1432C.1432D.18325.已知f(x)是偶函数,且608)(dxxf,则66)(dxxf()A.0B.4C.8D.1676.22)cos1(dxx等于()A.B.2C.2D.2二、计算题7.求下列定积分的值:(每题5分,计20分)(1)212)12(dxxx(2)dxxx)cos(sin0(3)212)1(dxxxx(4)dxxx)cos1(18.求定积分102))1(1dxxx(10分)8【试题答案】一、选择题1.(A)解析:由定积分的几何意义可知:选(A)2.(C)解析:kkkkkkkkkxxdxxxdxdxxx00320030222,100||320)32(或3.(B)解析:|2sin|2)2sin21(1cos12xxx4.(A)解析:],0[x当时,x
本文标题:定积分的计算
链接地址:https://www.777doc.com/doc-2498950 .html