您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 招聘面试 > 小学数学教师的学科专业知识及其拓展
1小学数学教师的学科专业知识及其拓展一、关于给小学数学教师进行学科知识及其拓展的培训意见1、培训内容(1)帮助教师们系统地掌握小学数学知识体系及其结构,包括能够解答教科书(如人教版12册)所有的练习题和复习题。(2)帮助教师们正确理解小学数学知识中容易误解的数学概念与有关知识,使他们的小学数学知识得到横向拓展。(3)立足于教学的需要,帮助教师们开阔知识视野,使他们的小学数学知识得到一定的纵向延伸。例如一些数学史知识。如数学王子高斯巧算1+2+…+100的故事;哥德巴赫猜想;祖冲之与圆周率等等。特别是,市场经济要求人们掌握更多有用的数学,成本、利润、投入、产出、货款、效益、市场预测、风险评估等一系列经济名词将成为人们社会生活中使用最为频繁的词汇,与这一系列经济活动相关的数学,如估算、比和比例、利息与利率、运筹与优化以及统计与概率等,理应成为数学课程中的组成部分,要求教师要有所掌握。2、培训方式(1)集中培训辅导:可根据实际情况,分段分块进行辅导,帮助教师们解决小学数学知识体系中的疑难问题。(2)校本培训学习:布置学习任务和作业任务,让教师们各自完成学习任务,自我提高。3、评价与考核建议小学数学教师的学科知识拓展培训的评价可分为:第一、学习态度和完成作业情况评价,占一定比例;第二、小学数学知识过关考试(卷面考试),占比例大些。考试内容:以小学数学新课程的内容标准所涉及的小学数学知识作为考试基本内容。试题设计:(1)基本数学概念及计算题,(2)综合题(中等难度),(3)知识拓展题。二、关于小学数学教师的学科专业知识及其拓展的认识1、小学教师的知识结构:教育知识、学科知识、学科教学知识三大部分。2教育知识包括教育学、心理学、学生思想工作(班主任)等方面的知识。它是教师在职前教育学习和平时工作实践学习积累而成的;学科知识是指本学科专业知识,包括了本学科知识体系及其思想方法,也是教师的学科专业功底涵养所在。它主要来源于教师的在接受教育期间学习和职前教学学习打下基础,以及平时教学实践学习的充实提高;学科教学知识体现了教师的专业独特性,是本专业教学实践性的知识。从数学专业的角度看,数学家不一定具有这种知识;从教学经验来看,高中语文教师也不具有小学数学教学的这种知识。这是教师将特定的学科知识与学生思维、学习特点等教学法的知识融合起来而形成的教学实践性知识。2、小学数学教师的学科专业知识我们在林崇德(北京师范大学教授,博士生导师)和申继亮(申继亮教授现任北师大心理学院党委书记、教育部人文社科重点研究基地发展心理研究所所长,中国心理学会常务理事、中国心理学会教育心理专业委员会主任,博士生导师)关于教师知识结构划分的基础上,结合新课程改革的发展及数学学科的特点,把数学教师的知识结构分为“教什么”的本体性知识,“如何教”的条件性知识和在教育教学实践中大量积累起来的实践性知识三个主要方面:(1)本体性知识,即学科专业知识。小学数学教师应具有的学科知识是特定的数学知识,主要包括教学所需要的数学理论知识、数学应用性知识、数学思想方法知识和数学史知识。(2)条件性知识,指个体在何种条件下,为什么传授数学知识以及如何更好地传授数学知识的一种知识类型,主要包括教育学和心理学的知识,其中教育学知识包括教育理论知识、教育技术知识、数学课程知识、数学教学知识;心理学知识包括教师心理知识和学生心理知识,教师心理知识又分为教学监控知识教学效能感、教学风格知识、教师品德知识;学生心理知识又分为数学认知的知识、数学学习的元认知知识、数学学习的非认知知识、学习风格知识。(3)实践性知识,指关于数学课堂情景及与之相关的知识,主要包括数学课堂教学管理知识和教材处理知识。教师要在自己的教学工作中不断增长自己的学科知识,也包括对已有知识的不断改进或必要重组。从另一角度说,数学学科知识主要包括:知识的内涵及多重表示、知识的发生和发展过程、知识之间的联系、知识所蕴含的数学思想和思维方式。小学数学教师要具有丰厚的数学知识、扎实的数学技能和成熟的数学思想。3三、小学数学教师的学科专业知识及其拓展(一)小学数学知识体系中“数与代数”的知识及其拓展1、小学数学中的“数的认识及其运算”数的认识数的运算数学思考一上20以内数的认识20以内加减法、进位加法求和应用题求差应用题图示加减两步应用题一下100以内数的认识20以内的退位减法100以内的加法与减法图文应用题表格应用题(在练习中)加减、比多少应用题二上100以内的加法和减法表内乘法几个几的乘法应用题求一个数的几倍的二下万以内数的认识表内除法整百、整千数加减法万以内数的加法和减法(一)解决问题三上分数的初步认识万以内数的加法和减法(二)有余数的除法多位数乘一位数分数的简单计算有余数除法的应用题巩固两步应用题三下小数的初步认识除数是一位数的除法两位数乘两位数简单的小数加减法巩固除法应用题连乘应用题解决问题四上大数的认识三位数乘两位数除数是两位数的除法速度问题四下小数的意义和性质四则运算运算定律小数的加法和减法相应的两三步应用题五上循环小数小数乘法小数除法解决问题每一种方程对应一种应用题五下因数和倍数分数的意义和性质分数的加法和减法分数两三步应用题六上倒数的认识百分数分数乘法分数除法解决问题按比例分配用百分数解决问题六下负数用比例解决问题关于数的认识的知识要点:(1)整数4十进制计数法:一(个)、十、百、千、万……都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100……每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。四舍五入法:求近似数,看要求近似到哪一位数,再看其后一位的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。(2)小数小数表示:把整数1平均分成10份、100份、1000份……这样的一份或几份是十分之几、百分之几、千分之几……这些分数可以用小数表示。如1/10记作0.1,6/100记作0.06。小数计数:小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)……小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就叫做几位小数。如0.56是两位小数,4.067是三位小数。数位顺序表:整数部分小数点小数部分…亿级万级个级数位…千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位·十分位百分位千分位…计数单位…千亿百亿十亿亿千万百万十万万千百十一(个)十分之一百分之一千分之一…小数的读法:整数部分整数读,小数点读点,小数部分顺序读。小数的写法:小数点写在个位右下角。小数的性质:小数末尾添0去0大小不变。化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。5(3)分数和百分数①分数和百分数的意义分数的意义:把单位“1”平均分成若干份,表示这样的一份或者几份的数,叫做分数。在分数里,表示把单位“1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。成数:几成就是十分之几。②分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数③分数和除法的关系及分数的基本性质除法是一种运算,有运算符号;分数是一种数。因此,一般应叙述为被除数相当于分子,而不能说成被除数就是分子。由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。④约分和通分分子、分母是互质数的分数,叫做最简分数。把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。⑤倒数乘积是1的两个数互为倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。1的倒数是1,0没有倒数。6⑥分数的大小比较分母相同的分数,分子大的那个分数就大。分子相同的分数,分母小的那个分数就大。分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。⑦百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是10%,则六成五就是65%。⑧纳税和利息:税率:应纳税额与各种收入的比率。利率:利息与本金的百分率。由银行规定按年或按月计算。利息的计算公式:利息=本金×利率×时间⑨百分数与分数的区别主要有以下三点:意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。”因此,百分数后面不能带单位名称。分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量。应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。书写形式不同。百分数通常不写成分数形式,而采用百分号“%”来表示。如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。(4)数的整除①整除的意义整数a除以整数b(b≠0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)7除尽的意义甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小数(乙数不能为0)。②约数和倍数如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。③奇数和偶数能被2整除的数叫偶数。例如:0、2、4、6、8、10……注:0也是偶数2、不能被2整除的数叫奇数。例如:1、3、5、7、9……④整除的特征能被2整除的数的特征:个位上是0、2、4、6、8。能被5整除的数的特征:个位上是0或5。能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3整除。⑤质数和合数在正整数集合里分为质数、合数和1。一个数只有1和它本身两个约数,这个数叫做质数(素数)。质数有无穷多个。一个数除了1和它本身外,还有别的约数,这个数叫做合数。合数有无穷多个。1既不是质数,也不是合数。自然数按约数的个数可分为:质数、合数自然数按能否被2整除分为:奇数、偶数⑥分解质因数每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=3×3×2,3和
本文标题:小学数学教师的学科专业知识及其拓展
链接地址:https://www.777doc.com/doc-2505317 .html