您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 山西省太原市外国语学校2015届高三数学上学期10月月考试卷理(含解析)
文档来源:弘毅教育园丁网数学第一站月月考数学试卷(理科)一、选择题:(本大题共12小题,每小题5分,共60分.)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件3.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q4.(5分)函数的图象是()A.B.C.D.5.(5分)设函数f(x)=ex+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<06.(5分)设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是()A.(0,)B.(,e)C.(0,]D.[,)文档来源:弘毅教育园丁网数学第一站.(5分)对任意实数a、b,定义运算“*”:a*b=则函数f(x)=(3x﹣2)*log2x的值域为()A.[0,+∞)B.(﹣∞,0]C.(log2,0)D.(log2,+∞)8.(5分)设函数f(x)的导函数为f′(x),对任意x∈R都有f′(x)>f(x)成立,则()A.3f(ln2)>2f(ln3)B.3f(ln2)=2f(ln3)C.3f(ln2)<2f(ln3)D.3f(ln2)与2f(ln3)的大小不确定9.(5分)设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1﹣x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(﹣2)和极小值f(1)C.函数f(x)有极大值f(2)和极小值f(﹣2)D.函数f(x)有极大值f(﹣2)和极小值f(2)10.(5分)设f(x)、g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f′(x)g(x)+f(x)g′(x)>0,且g(﹣3)=0,则不等式f(x)g(x)<0的解集是()A.(﹣3,0)∪(3,+∞)B.(﹣3,0)∪(0,3)C.(﹣∞,﹣3)∪(3,+∞)D.(﹣∞,﹣3)∪(0,3)11.(5分)已知函数f(x)=log2(a﹣2x)+x﹣2,若f(x)存在零点,则实数a的取值范围是()A.(﹣∞,﹣4]∪[4,+∞)B.[1,+∞)C.[2,+∞)D.[4,+∞)12.(5分)设函数f(x)的定义域为R,且f(x+2)=f(x+1)﹣f(x),若f(4)=﹣2则函数的最小值是()A.1B.3C.ln3D.ln2文档来源:弘毅教育园丁网数学第一站二、填空题(本大题共4小题,每小题5分,共20分,把正确答案填在题中横线上)13.(5分)已知直线y=2x﹣1与曲线y=ln(x+a)相切,则a的值为.14.(5分)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0,若f(x﹣1)>0,则x的取值范围是.15.(5分)命题“∃x∈(1,2)时,满足不等式x2+mx+4≥0”是假命题,则m的取值范围是.16.(5分)已知函数f(x)=,若f(a)=,则f(﹣a)=.三、解答题(共70分,解答应写出文字说明,证明过程或演算步骤.)17.(12分)已知命题“p:∀a∈[1,2]|m﹣5|≤”;命题“q:函数f(x)=x3+mx2+(m+6)x+1在R上有极值”.求使“p且¬q”为真命题的实数m的取值范围.18.(12分)已知函数f(x)=4x++b(a,b∈R)为奇函数.(1)若f(1)=5,求函数f(x)的解析式;(2)当a=﹣2时,不等式f(x)≤t在[1,4]上恒成立,求实数t的最小值.19.(12分)已知函数f(x)的定义域为(﹣2,2),函数g(x)=f(x﹣1)+f(3﹣2x).(1)求函数g(x)的定义域;(2)若f(x)是奇函数且在定义域内单调递减,求不等式g(x)≤0的解集.20.(12分)已知函数f(x)=klnx﹣kx﹣3(k∈R).(Ⅰ)当k=﹣1时,求函数f(x)的单调区间;(Ⅱ)若函数y=f(x)的图象在(2,f(2))处的切线与直线x﹣y﹣3=0平行,且函数g(x)=x3+f'(x)在区间(1,2)上有极值,求t的取值范围.21.(12分)设函数f(x)=lnx﹣ax,g(x)=ex﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.四、选做题(本小题满分10分)从以下两个大题中任选一题作答.选修4-4:坐标系与参数方程文档来源:弘毅教育园丁网数学第一站.(10分)在平面直角坐标系xOy中,曲线C1的参数方程为(φ为参数),曲线C2的参数方程为(a>b>0,φ为参数)在以O为极点,x轴的正半轴为极轴的极坐标系中,射线l:θ=α与C1,C2各有一个交点.当α=0时,这两个交点间的距离为2,当α=时,这两个交点重合.(I)分别说明C1,C2是什么曲线,并求出a与b的值;(II)设当α=时,l与C1,C2的交点分别为A1,B1,当α=﹣时,l与C1,C2的交点为A2,B2,求四边形A1A2B2B1的面积.五、选修4-5:不等式选讲23.选修4﹣5:不等式选讲已知函数f(x)=丨x﹣a丨+|x﹣1丨,a∈R.(Ⅰ)当a=3时,解不等式f(x)≤4;(Ⅱ)当x∈(﹣2,1))时,f(x)>|2x﹣a﹣1|.求a的取值范围.山西省太原市外国语学校2015届高三上学期10月月考数学试卷(理科)参考答案与试题解析一、选择题:(本大题共12小题,每小题5分,共60分.)1.(5分)设全集U={x∈N|x≥2},集合A={x∈N|x2≥5},则∁UA=()A.∅B.{2}C.{5}D.{2,5}考点:补集及其运算.专题:集合.分析:先化简集合A,结合全集,求得∁UA.解答:解:∵全集U={x∈N|x≥2},集合A={x∈N|x2≥5}={x∈N|x≥3},则∁UA={2},故选:B.点评:本题主要考查全集、补集的定义,求集合的补集,属于基础题.2.(5分)“x<0”是“ln(x+1)<0”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件考点:充要条件.专题:计算题;简易逻辑.分析:根据不等式的性质,利用充分条件和必要条件的定义进行判断即可得到结论.解答:解:∵x<0,∴x+1<1,当x+1>0时,ln(x+1)<0;文档来源:弘毅教育园丁网数学第一站∵ln(x+1)<0,∴0<x+1<1,∴﹣1<x<0,∴x<0,∴“x<0”是ln(x+1)<0的必要不充分条件.故选:B.点评:本题主要考查充分条件和必要条件的判断,根据不等式的性质是解决本题的关键,比较基础.3.(5分)已知命题p:∀x∈R,2x<3x;命题q:∃x∈R,x3=1﹣x2,则下列命题中为真命题的是()A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q考点:复合命题的真假.专题:阅读型;简易逻辑.分析:举反例说明命题p为假命题,则¬p为真命题.引入辅助函数f(x)=x3+x2﹣1,由函数零点的存在性定理得到该函数有零点,从而得到命题q为真命题,由复合命题的真假得到答案.解答:解:因为x=﹣1时,2﹣1>3﹣1,所以命题p:∀x∈R,2x<3x为假命题,则¬p为真命题.令f(x)=x3+x2﹣1,因为f(0)=﹣1<0,f(1)=1>0.所以函数f(x)=x3+x2﹣1在(0,1)上存在零点,即命题q:∃x∈R,x3=1﹣x2为真命题.则¬p∧q为真命题.故选B.点评:本题考查了复合命题的真假,考查了指数函数的性质及函数零点的判断方法,解答的关键是熟记复合命题的真值表,是基础题.4.(5分)函数的图象是()A.B.C.D.考点:对数函数图象与性质的综合应用.专题:计算题;数形结合.文档来源:弘毅教育园丁网数学第一站分析:求出函数的定义域,通过函数的定义域,判断函数的单调性,推出选项即可.解答:解:因为,解得x>1或﹣1<x<0,所以函数的定义域为:(﹣1,0)∪(1,+∞).所以选项A、C不正确.当x∈(﹣1,0)时,是增函数,因为y=lnx是增函数,所以函数是增函数.故选B.点评:本题考查函数的图象的综合应用,对数函数的单调性的应用,考查基本知识的综合应用,考查数形结合,计算能力.判断图象问题,一般借助:函数的定义域、值域、单调性、奇偶性、周期性、以及函数的图象的变化趋势等等.5.(5分)设函数f(x)=ex+x﹣2,g(x)=lnx+x2﹣3.若实数a,b满足f(a)=0,g(b)=0,则()A.g(a)<0<f(b)B.f(b)<0<g(a)C.0<g(a)<f(b)D.f(b)<g(a)<0考点:函数的值;不等关系与不等式.专题:函数的性质及应用.分析:先判断函数f(x),g(x)在R上的单调性,再利用f(a)=0,g(b)=0判断a,b的取值范围即可.解答:解:①由于y=ex及y=x﹣2关于x是单调递增函数,∴函数f(x)=ex+x﹣2在R上单调递增,分别作出y=ex,y=2﹣x的图象,∵f(0)=1+0﹣2<0,f(1)=e﹣1>0,f(a)=0,∴0<a<1.同理g(x)=lnx+x2﹣3在R+上单调递增,g(1)=ln1+1﹣3=﹣2<0,g()=,g(b)=0,∴.∴g(a)=lna+a2﹣3<g(1)=ln1+1﹣3=﹣2<0,f(b)=eb+b﹣2>f(1)=e+1﹣2=e﹣1>0.∴g(a)<0<f(b).故选A.文档来源:弘毅教育园丁网数学第一站点评:熟练掌握函数的单调性、函数零点的判定定理是解题的关键.6.(5分)设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,3]上有三个零点,则实数a的取值范围是()A.(0,)B.(,e)C.(0,]D.[,)考点:根的存在性及根的个数判断;函数零点的判定定理.专题:函数的性质及应用.分析:首先,画出函数f(x)=|lnx|的图象,然后,借助于图象,结合在区间(0,3]上有三个零点,进行判断.解答:解:函数f(x)=|lnx|的图象如图示:当a≤0时,显然,不合乎题意,当a>0时,如图示,当x∈(0,1]时,存在一个零点,当x>1时,f(x)=lnx,可得g(x)=lnx﹣ax,(x∈(1,3])g′(x)==,若g′(x)<0,可得x>,g(x)为减函数,若g′(x)>0,可得x<,g(x)为增函数,此时f(x)必须在[1,3]上有两个零点,文档来源:弘毅教育园丁网数学第一站∴解得,,在区间(0,3]上有三个零点时,,故选D.点评:本题重点考查函数的零点,属于中档题,难度中等.7.(5分)对任意实数a、b,定义运算“*”:a*b=则函数f(x)=(3x﹣2)*log2x的值域为()A.[0,+∞)B.(﹣∞,0]C.(log2,0)D.(log2,+∞)考点:对数函数的值域与最值.专题:函数的性质及应用.分析:根据所给定义表示出f(x),求出分段函数在各段的值域再求其并集即可.解答:解:由定义得f(x)=,当x≥1时,f(x)≤f(1)=0;当<x<1时,f(x)<f(1)=0,所以函数f(x)的值域为(﹣∞,0],故选B.点评:本题考查对数函数的值域求解,考查学生解决新问题的能力,属中档题.8.(5分
本文标题:山西省太原市外国语学校2015届高三数学上学期10月月考试卷理(含解析)
链接地址:https://www.777doc.com/doc-2516865 .html