您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业文化 > 嵌入式开发教程之Linux内核中常见内存分配函数
千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程之原理说明Linux内核中采用了一种同时适用于32位和64位系统的内存分页模型,对于32位系统来说,两级页表足够用了,而在x86_64系统中,用到了四级页表,如图2-1所示。四级页表分别为:*页全局目录(PageGlobalDirectory)*页上级目录(PageUpperDirectory)*页中间目录(PageMiddleDirectory)*页表(PageTable)页全局目录包含若干页上级目录的地址,页上级目录又依次包含若干页中间目录的地址,而页中间目录又包含若干页表的地址,每一个页表项指向一个页框。Linux中采用4KB大小的页框作为标准的内存分配单元。千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程之多级分页目录结构1.1.伙伴系统算法在实际应用中,经常需要分配一组连续的页框,而频繁地申请和释放不同大小的连续页框,必然导致在已分配页框的内存块中分散了许多小块的空闲页框。这样,即使这些页框是空闲的,其他需要分配连续页框的应用也很难得到满足。为了避免出现这种情况,Linux内核中引入了伙伴系统算法(buddysystem)。把所有的空闲页框分组为11个块链表,每个块链表分别包含大小为1,2,4,8,16,32,64,128,256,512和1024个连续页框的页框块。最大可以申请1024个连续页框,对应4MB大小的连续内存。每个页框块的第一个页框的物理地址是该块大小的整数倍。千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程假设要申请一个256个页框的块,先从256个页框的链表中查找空闲块,如果没有,就去512个页框的链表中找,找到了则将页框块分为2个256个页框的块,一个分配给应用,另外一个移到256个页框的链表中。如果512个页框的链表中仍没有空闲块,继续向1024个页框的链表查找,如果仍然没有,则返回错误。页框块在释放时,会主动将两个连续的页框块合并为一个较大的页框块。千锋3G嵌入式移动互联网技术研发培训中心分配器slab分配器源于Solaris2.4的分配算法,工作于物理内存页框分配器之上,管理特定大小对象的缓存,进行快速而高效的内存分配。slab分配器为每种使用的内核对象建立单独的缓冲区。Linux内核已经采用了伙伴系统管理物理内存页框,因此slab分配器直接工作于伙伴系统之上。每种缓冲区由多个slab组成,每个slab就是一组连续的物理内存页框,被划分成了固定数目的对象。根据对象大小的不同,缺省情况下一个slab最多可以由1024个页框构成。出于对齐等其它方面的要求,slab中分配给对象的内存可能大于用户要求的对象实际大小,这会造成一定的内存浪费。千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程之常用内存分配函数2.1.__get_free_pagesunsignedlong__get_free_pages(gfp_tgfp_mask,unsignedintorder)__get_free_pages函数是最原始的内存分配方式,直接从伙伴系统中获取原始页框,返回值为第一个页框的起始地址。__get_free_pages在实现上只是封装了alloc_pages函数,从代码分析,alloc_pages函数会分配长度为1order的连续页框块。order参数的最大值由include/linux/Mmzone.h文件中的MAX_ORDER宏决定,在默认的2.6.18内核版本中,该宏定义为10。也就是说在理论上__get_free_pages函数一次最多能申请110*4KB也就是4MB的连续物理内存。但是在实际应用中,很可能因为不存在这么大量的连续空闲页框而导致分配失败。在测试中,order为10时分配成功,order为11则返回错误。千锋3G嵌入式移动互联网技术研发培训中心structkmem_cache*kmem_cache_create(constchar*name,size_tsize,size_talign,unsignedlongflags,void(*ctor)(void*,structkmem_cache*,unsignedlong),void(*dtor)(void*,structkmem_cache*,unsignedlong))void*kmem_cache_alloc(structkmem_cache*c,gfp_tflags)千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程kmem_cache_create/kmem_cache_alloc是基于slab分配器的一种内存分配方式,适用于反复分配释放同一大小内存块的场合。首先用kmem_cache_create创建一个高速缓存区域,然后用kmem_cache_alloc从该高速缓存区域中获取新的内存块。kmem_cache_alloc一次能分配的最大内存由mm/slab.c文件中的MAX_OBJ_ORDER宏定义,在默认的2.6.18内核版本中,该宏定义为5,于是一次最多能申请15*4KB也就是128KB的连续物理内存。分析内核源码发现,kmem_cache_create函数的size参数大于128KB时会调用BUG()。测试结果验证了分析结果,用kmem_cache_create分配超过128KB的内存时使内核崩溃。千锋3G嵌入式移动互联网技术研发培训中心void*kmalloc(size_tsize,gfp_tflags)kmalloc是内核中最常用的一种内存分配方式,它通过调用kmem_cache_alloc函数来实现。kmalloc一次最多能申请的内存大小由include/linux/Kmalloc_size.h的内容来决定,在默认的2.6.18内核版本中,kmalloc一次最多能申请大小为131702B也就是128KB字节的连续物理内存。测试结果表明,如果试图用kmalloc函数分配大于128KB的内存,编译不能通过。千锋3G嵌入式移动互联网技术研发培训中心void*vmalloc(unsignedlongsize)前面几种内存分配方式都是物理连续的,能保证较低的平均访问时间。但是在某些场合中,对内存区的请求不是很频繁,较高的内存访问时间也可以接受,这是就可以分配一段线性连续,物理不连续的地址,带来的好处是一次可以分配较大块的内存。图3-1表示的是vmalloc分配的内存使用的地址范围。vmalloc对一次能分配的内存大小没有明确限制。出于性能考虑,应谨慎使用vmalloc函数。在测试过程中,最大能一次分配1GB的空间。千锋3G嵌入式移动互联网技术研发培训中心内核部分内存分布2.5.dma_alloc_coherentvoid*dma_alloc_coherent(structdevice*dev,size_tsize,ma_addr_t*dma_handle,gfp_tgfp)DMA是一种硬件机制,允许外围设备和主存之间直接传输IO数据,而不需要CPU的参与,使用DMA机制能大幅提高与设备通信的吞吐量。千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程DMA操作中,涉及到CPU高速缓存和对应的内存数据一致性的问题,必须保证两者的数据一致,在x86_64体系结构中,硬件已经很好的解决了这个问题,dma_alloc_coherent和__get_free_pages函数实现差别不大,前者实际是调用__alloc_pages函数来分配内存,因此一次分配内存的大小限制和后者一样。__get_free_pages分配的内存同样可以用于DMA操作。测试结果证明,dma_alloc_coherent函数一次能分配的最大内存也为4M。千锋3G嵌入式移动互联网技术研发培训中心void*ioremap(unsignedlongoffset,unsignedlongsize)ioremap是一种更直接的内存“分配”方式,使用时直接指定物理起始地址和需要分配内存的大小,然后将该段物理地址映射到内核地址空间。ioremap用到的物理地址空间都是事先确定的,和上面的几种内存分配方式并不太一样,并不是分配一段新的物理内存。ioremap多用于设备驱动,可以让CPU直接访问外部设备的IO空间。ioremap能映射的内存由原有的物理内存空间决定,所以没有进行测试。千锋3G嵌入式移动互联网技术研发培训中心如果要分配大量的连续物理内存,上述的分配函数都不能满足,就只能用比较特殊的方式,在Linux内核引导阶段来预留部分内存。千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程之在内核引导时分配内存void*alloc_bootmem(unsignedlongsize)可以在Linux内核引导过程中绕过伙伴系统来分配大块内存。使用方法是在Linux内核引导时,调用mem_init函数之前用alloc_bootmem函数申请指定大小的内存。如果需要在其他地方调用这块内存,可以将alloc_bootmem返回的内存首地址通过EXPORT_SYMBOL导出,然后就可以使用这块内存了。这种内存分配方式的缺点是,申请内存的代码必须在链接到内核中的代码里才能使用,因此必须重新编译内核,而且内存管理系统看不到这部分内存,需要用户自行管理。测试结果表明,重新编译内核后重启,能够访问引导时分配的内存块。千锋3G嵌入式移动互联网技术研发培训中心嵌入式开发教程之通过内核引导参数预留顶部内存在Linux内核引导时,传入参数“mem=size”保留
本文标题:嵌入式开发教程之Linux内核中常见内存分配函数
链接地址:https://www.777doc.com/doc-2517763 .html