您好,欢迎访问三七文档
××××市安全生产培训机构教师优秀教案课件评选活动参评教案工种:电工课程名称:电气防火防爆作者姓名:×××单位:×××××××电力实业总公司通讯地址:×××省××××市×××区北郊×××发电厂教育培训中心邮政编码:××××××联系电话:×××××××××××1第六章电气防火防爆火灾和爆炸事故往往是重大的人身伤亡和设备损坏事故。电气火灾和爆炸事故在火灾和爆炸事故中占有很大的比例,仅就电气火灾而言,不论是发生频率还是所造成的经济损失,在火灾中所占的比例都有上升的趋势。配电线路、高低压开关电器、熔断器、插座、照明器具、电动机、电热器具等电气设备均可能引起火灾。电力电容器、电力变压器、电力电缆、多油断路器等电气装置除可能引起火灾外,本身还可能发生爆炸。电气火灾火势凶猛,如不及时扑灭,势必迅速蔓延。电气火灾和爆炸事故除可能造成人身伤亡和设备损坏外,还可能造成大规模或长时间停电,给国家财产造成重大损失。第一节电气火灾与爆炸的原因电气火灾发生的原因是多种多样的,例如过载、短路、接触不良、电弧火花、漏电、雷电或静电等都能引起火灾。有的火灾是人为的,比如:思想麻痹,疏忽大意,不遵守有关防火法规,违犯操作规程等。从电气防火角度看,电气设备质量不高,安装使用不当,保养不良,雷击和静电是造成电气火灾的几个重要原因。一、电气设备过热实际中常见引起电气设备过热的情况有:1.短路短路是电气设备最严重的一种故障状态,发生短路时,线路中的电流增大为正常时的几倍甚至几十倍,而产生的热量又和电流的平方成正比,使得温度急剧上升,大大超过允许范围。如果温度达到可燃物的自燃点,即引起燃烧,从而导致火灾。产生短路的主要原因有:(1)电气设备的选用和安装与使用环境不符,致使其绝缘体在高温、潮湿、酸碱环境条件下受到破坏。(2)由于设备安装不当或工作疏忽,可能使电气设备的绝缘受到机械损伤形成短路。如绝缘导线直接缠绕、勾挂在铁钉或铁丝上,很容易使绝缘破坏。(3)由于雷击等过电压作用,使绝缘击穿。(4)由于接线和操作的错误,也可能造成短路。短路时,在短路点或导线连接松弛的电气接头处,会产生电弧或火花。电弧温度很高,2可达6000℃以上,不但可引燃它本身的绝缘材料,还可将它附近的可燃材料、蒸气和粉尘引燃。电弧还可能是由于接地装置不良或电气设备与接地装置间距过小,过电压时使空气击穿引起。切断或接通大电流电路时,或大截面熔断器爆断时,也能产生电弧。2.过载所谓过载,是指电气设备或导线的功率和电流超过了其额定值。造成过载的原因有以下几个方面:(1)设计、安装时选型不正确,使电气设备的额定容量小于实际负载容量。(2)设备或导线随意装接,增加负荷,造成超载运行。(3)检修、维护不及时,使设备或导线长期处于带病运行状态。电气设备或导线的绝缘材料,大都是可燃材料。属于有机绝缘材料的有油、纸、麻、丝和棉的纺织品、树脂、沥青、漆、塑料、橡胶等。只有少数属于无机材料,例如陶瓷、石棉和云母等是不易燃材料。过载使导体中的电能转变成热能,当导体和绝缘物局部过热,达到一定温度时,就会引起火灾。我国不乏这样的惨痛教训:电线电缆上面的木装板被过载电流引燃,酿成商店、剧院和其它场所的巨大火灾。3.接触不良接触部分是电路中的薄弱环节,常见的接触不良主要发生在导线连接处,如:(1)电气接头表面污损,接触电阻增加。(2)电气接头长期运行,产生导电不良的氧化膜,未及时清除。(3)电气接头因振动或由于热的作用,使联接处发生松动。(4)铜铝连接处,因有约1.69V电位差的存在,潮湿时会发生电解作用,使铝腐蚀,造成接触不良。接触不良,会形成局部过热,形成潜在引燃源。4.铁芯发热变压器、电动机等设备的铁芯,如设计制造不合理、绝缘损坏或承受长时间过电压,其涡流损耗和磁滞损耗将增加而使设备过热。5.散热不良各种电气设备在设计和安装时都要考虑有一定的散热或通风措施,电热器具(如电炉、电熨斗等),照明灯泡,在正常通电的状态下,就相当于一个火源或高温热源。当其安装不当或长期通电无人监护管理时,就可能使附近的可燃物受高温而起火。二、电火花和电弧3电火花是电极间的绝缘被击穿放电,电弧是大量的电火花汇集而成的。电气线路和电气设备发生短路或接地故障、接头松脱、炭刷冒火、过电压放电、静电放电、熔断器中熔体熔断、电器触头开闭等都会产生电火花和电弧。电弧温度很高,可达6000—8000℃以上,电火花和电弧不仅可以直接引燃或引爆易燃易爆物质,电弧还会导致金属熔化、飞溅而构成引燃易燃物品的火源。所以,在有火灾危险场所,尤其是在有爆炸危险场所,电火花和电弧是引起爆炸和火灾的重要因素。以下情况可能引起空间爆炸(1)周围空间有爆炸性混合物,在危险温度或电火花作用下引起空间爆炸。(2)充油设备的绝缘油在电弧作用下分解和汽化,喷出大量油雾和可燃气体,引起空间爆炸。(3)发电机氢冷装置漏气、酸性蓄电池排除氢气等,都会形成爆炸性混合物,引起空间爆炸。第二节危险物质和危险环境在大气条件下,气体、蒸气、薄雾、粉尘或纤维状的易燃物质与空气混合,点燃后燃烧能在整个范围内传播的混合物称为爆炸性混合物。能形成上述爆炸性混合物的物质称为爆炸危险物质。凡有爆炸性混合物出现或可能有爆炸性混合物出现,且出现的量足以要求对电气设备和电气线路的结构、安装、运行采取防爆措施的环境称为爆炸危险环境。爆炸危险物质类别分为以下三类:I类:矿井甲烷;Ⅱ类:爆炸性气体、蒸气、薄雾;Ⅲ类:爆炸性粉尘、纤维。一、危险物质的性能参数危险物质的主要性能参数包括:危险物质的闪点、燃点、引燃温度、爆炸极限、最小点燃电流比、最小引燃能量、最大试验安全间隙等。1.闪点在规定的试验条件下,易燃液体能释放出足够的蒸气并在液面上方与空气形成爆炸性混合物,点火时能发生闪燃(一闪即灭)的最低温度。闪点越低危险性越大。2.燃点4燃点是物质在空气中点火时发生燃烧,移去火源仍能继续燃烧的最低温度。对于闪点不超过45℃的易燃液体,燃点仅比闪点高1~5℃,一般只考虑闪点,不考虑燃点。对于闪点比较高的可燃液体和可燃固体,闪点与燃点相差较大,应用时有必要加以考虑。3.引燃温度引燃温度又称自燃点或自燃温度,是指在规定试验条件下,可燃物质不需要外来火源即发生燃烧的最低温度。爆炸性气体、蒸汽按引燃温度分为六组。4.爆炸极限爆炸极限分为爆炸浓度极限和爆炸温度极限,后者很少用到,通常所指的都是爆炸浓度极限。该极限是指在一定的温度和压力下,气体、蒸气、薄雾或粉尘、纤维与空气形成的能够被引燃并传播火焰的浓度范围。该范围的最低浓度称为爆炸下限、最高浓度称为爆炸上限。5.最小点燃电流比最小点燃电流比(MICR)是指在规定试验条件下,气体、蒸气、薄雾等爆炸性混合物的最小点燃电流与甲烷爆炸性混合物的最小点燃电流之比。6.最大试验安全间隙最大试验安全间隙(MESG),是衡量爆炸性物品传爆能力的性能参数,是指在规定试验条件下,两个经间隙长为25mm连通的容器,一个容器内燃爆时不致引起另一个容器内燃爆的最大连通间隙。二、危险物质分组和分级气体、蒸汽危险物质按引燃温度分为T1、T1、T2、T3、T4、T5和T6六组;按最小点燃电流比和最大试验安全间隔分为ⅡA、ⅡB和ⅡC级。应当指出,气体、蒸汽按最大试验安全间隙与最小点燃电流比虽然都分为三级,但在分级上的关系只是近似相等。三、危险环境的分类为了正确选用电气设备、电气线路和各种防爆设施,必须正确划分所在环境危险区域的大小和级别。1、爆炸和火灾危险区域类别及等级爆炸和火灾危险区域类别及其分区方法,是我国借鉴国际电工委员会(IEC)的标准,结合我国的实际情况划分的。它根据爆炸性环境易燃易爆物质在生产、储存、输送和使用过程中出现的物理和化学现象的不同,分为爆炸性气体环境危险区域和爆炸性粉尘环境危险区域二类。根据爆炸性环境,爆炸性混合物出现的频繁程度和持续时间的不同,又将爆炸危险区域分成五个不同危险程度的区。而火灾危险区域只有一类,但由于在这个区域内火灾危险物5质的危险程度和物质状态不一样,又将其分成三个不同危险程度的区。区可以是爆炸危险场所的全部,也可是其一部分。在这个区域内,如果爆炸性混合物的出现或预期可能出现的数量达到足以要求对电气设备的结构、安装和使用采取预防措施的程度,这样的区必须以爆炸性危险区域对待,进行防火防爆设计。爆炸和火灾危险区域类别及其分区,如表1、2所示。爆炸和火灾危险区域类别及区域等级表1按爆炸性混合物出现的频繁程度和持续时间划分爆炸性气体环境危险区域O区连续出现或长期出现爆炸性气体混合物的环境1区在正常运行时,可能出现爆炸性气体温合物的环境2区在正常运行时,不可能出现爆炸性气体混合物的环境,即使出现也仅是短时存在的爆炸性气体混合物的环境爆炸性粉尘环境危险区域10区连续出现或长期出现爆炸性粉尘的环境11区有时会将积留下的粉尘扬起而偶然出现爆炸性粉尘混合物的环境表2按火灾事故发生的可能性和后果、危险程度及物质状态划分火灾危险区域21区具有闪点高飞环境温度的可燃液体,在数量和配置上能引起火灾危险的环境22区具有悬浮状、堆积状爆炸性或可燃性粉尘,虽不可能形成爆炸性混合物,但在数量和配置上能引起火灾危险的环境23区具有固体状可燃物质,在数量和配置上能引起火灾危险的环境上面提到的“正常运行”是指正常起动、运转、操作和停止的一种工作状态或过程,当然也应该包括产品从设备中取出和对设备开闭盖子、投料、除杂质以及安全阀、排污阀等的正常操作。不正常情况是指因容器、管路装置的破损故障和错误操作等,引起爆炸性混合物的泄漏和积聚,以致有产生爆炸危险的可能性。工程设计,防火审图和消防工作检查中,对危险区域等级的划分,应该视爆炸性混合物的产生条件、时间、物理性质及其释放频繁程度等情况来确定。对一个爆炸危险区域,判断其有无爆炸性混合物产生,应根据区域空间的大小、物料的品种与数量、设备情况(如运行情况、操作方法、通风、容器破损和误操作的可能性),气体浓度测量的准确性,以及物理性质和运行经验等条件予以综合分析确定。如氨气爆炸浓度范围为15.5%~27%,但具有强烈刺激气味,易被值班人员发现,可划为较低级别。对容易积聚比重大的气体或蒸汽的通风不良的死角或地坑等低洼处,就应视为高级区别。对火灾危险区域,首先应看其可燃物的数量和配置情况,然后才能确定是否有引起火6灾的可能,切忌只要有可燃物质就划为火灾危险区域的错误做法,这样既不经济也不安全。第三节防爆电气设备和防爆电气线路电气火灾和爆炸的防护必须是综合性措施。它包括合理选用和正确安装电气设备及电气线路,保持电气设备和线路的正常运行,保证必要的防火间距,保持良好的通风,装设良好的保护装置等技术措施。一、防爆电气设备火灾和爆炸危险环境使用的电气设备,结构上应能防止由于在使用中产生火花、电弧或危险温度而成为安装地点爆炸性混合物的引燃源。因此,火灾和爆炸危险环境使用的电气设备是否合理,直接关系到工矿企业的安全生产。防爆电气设备的类型很多,性能各异。根据电气设备产生火花、电弧和危险温度的特点,为防止其点燃爆炸性混合物而采取的措施不同分为下列八种型式:1.隔爆型(标志d):是一种具有隔爆外壳的电气设备,其外壳能承受内部爆炸性气体混合物的爆炸压力并阻止内部的爆炸向外壳周围爆炸性混合物传播。适用于爆炸危险场所的任何地点。多用于强电技术,如电机、变压器、开关等。2.增安型(标志e):在正常运行条件下不会产生电弧、火花,也不会产生足以点燃爆炸性混合物的高温。在结构上采取种种措施来提高安全程度,以避免在正常和认可的过载条件下产生电弧、火花和高温。它没有隔爆外壳,多用于鼠笼型电机等。3.本质安全型(标志ia、ib):采用IEC76-3火花试验装置,在正常工作或规定的故障状态下产生的电火花和热效应均不能点燃规定的爆炸性混合物。这种电气设备按使用场所和安全程度分为ia和ib两个等级。ia等级设备在正常工作、一个故障和二个故障时均不能点燃爆炸性气体混合物。ib等级设备在正常工作和一个故障时不能点燃爆炸性气体混合物。正常工作和故障状态是用安全系数来衡量的。安全系数是电路最小引爆电流(或电压)与其电路的电流(或电压)的比
本文标题:培训教师比武教案
链接地址:https://www.777doc.com/doc-2533041 .html