您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 导学案013函数的应用教案
济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名1函数的应用考纲要求1.考查二次函数模型的建立及最值问题.2.考查分段函数模型的建立及最值问题.3.考查指数(型)、对数(型)、幂函数(型)函数模型的建立及最值问题.考情分析1.现实生活中的生产经营、环境保护、工程建设等热点问题中的增长、减少问题,一次函数、二次函数、指数函数、对数函数模型等问题是重点,也是难点,主要考查建模能力及分析问题和解决问题的能力;2.题型方面选择题、填空题及解答题都有所体现,但以解答题为主.教学过程基础梳理1.常见的函数模型及性质(1)几类函数模型①一次函数模型:y=kx+b(k≠0).②二次函数模型:y=ax2+bx+c(a≠0).③指数函数型模型:y=abx+c(b>0,b≠1).④对数函数型模型:y=mlogax+n(a>0,a≠1).⑤幂函数型模型:y=axn+b.(2)三种函数模型的性质函数性质y=ax(a1)y=logax(a1)y=xn(n0)在(0,+∞)上的增减性增长速度图象的变化随x的增大逐渐表现为与平行随x的增大逐渐表现为与平行随n值变化而各有不同值的比较存在一个x0,当x>x0时,有logax<xn<ax双基自测济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名21.若22xx,则x的取值范围是____________。2.(2012·新乡月考)某产品的总成本y(万元)与产量x(台)之间的函数关系是y=3000+20x-0.1x2(0<x<240,x∈N*),若每台产品的售价为25万元,则生产者不亏本时(销售收入不小于总成本)的最低产量是().A.100台B.120台C.150台D.180台3.有一批材料可以围成200米长的围墙,现用此材料在一边靠墙的地方围成一块矩形场地(如图),且内部用此材料隔成三个面积相等的矩形,则围成的矩形场地的最大面积为().A.1000米2B.2000米2C.2500米2D.3000米24.(2011·湖北)里氏震级M的计算公式为:M=lgA-lgA0,其中A是测震仪记录的地震曲线的最大振幅,A0是相应的标准地震的振幅.假设在一次地震中,测震仪记录的最大振幅是1000,此时标准地震的振幅为0.001,则此次地震的震级为__________级;9级地震的最大振幅是5级地震最大振幅的________倍.5.(2012·东三校联考)为了保证信息安全,传输必须使用加密方式,有一种方式其加密、解密原理如下:明文――→加密密文――→发送密文――→解密明文已知加密为y=ax-2(x为明文,y为密文),如果明文“3”通过加密后得到密文为“6”,再发送,接受方通过解密得到明文“3”,若接受方接到密文为“14”,则原发的明文是________.解析依题意y=ax-2中,当x=3时,y=6,故6=a3-2,解得a=2.所以加密为y=2x-2,因此,当y=14时,由14=2x-2,解得x=4.答案4济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名3典例分析考点一一次函数、二次函数函数模型的应用【例1】(2012·温州模拟)西部大开发是中华人民共和国中央政府的一项政策,提高了西部的经济和社会发展水平.西部山区的某种特产由于运输原因,长期只能在当地销售,当地政府对该项特产的销售投资收益为:每年投入x万元,可获得利润P=-1160(x-40)2+100万元.当地政府借助大开发拟在新的十年发展规划中加快发展此特产的销售,其规划方案为:在规划前后对该项目每年都投入60万元的销售投资,在未来10年的前5年中,每年都从60万元中拨出30万元用于修建一条公路,5年修成,通车前该特产只能在当地销售;公路通车后的5年中,该特产既在本地销售,也在外地销售,在外地销售的投资收益为:每年投入x万元,可获利润Q=-159160(60-x)2+1192(60-x)万元.问从10年的总利润看,该规划方案是否具有实施价值?变式1.(2012·嘉兴月考)为了发展电信事业方便用户,电信公司对移动电话采用不同的收费方式,其中所使用的“如意卡”与“便民卡”在某市范围内每月(30天)的通话时间x(分)与通话费y(元)的关系如图所示.则通话费y1,y2与通话时间x之间的函数关系式分别为________,________.:1.在实际问题中,有很多问题的两变量之间的关系是一次函数模型,其增长特点是直线上升(自变量的系数大于0)或直线下降(自变量的系数小于0),构建一次函数模型,利用一次函数的图象与单调性求解.2.有些问题的两变量之间是二次函数关系,如面积问题、利润问题、产量问题等.构建二次函数模型,利用二次函数图象与单调性解决.3.在解决二次函数的应用问题时,一定要注意定义域.考点二、分段函数模型济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名4例2经市场调查,某种商品在过去50天的销售量和价格均为销售时间t(天)的函数,且销售量近似地满足f(t)=-2t+200(1≤t≤50,t∈N).前30天价格为g(t)=12t+30(1≤t≤30,t∈N),后20天价格为g(t)=45(31≤t≤50,t∈N).(1)写出该种商品的日销售额S与时间t的函数关系;(2)求日销售额S的最大值.1.分段函数主要是每一段自变量变化所遵循的规律不同,可以先将其当作几个问题,将各段的变化规律分别找出来,再将其合到一起,要注意各段自变量的范围,特别是端点值.2.构造分段函数时,要力求准确、简洁,做到分段合理不重不漏.考点三、指数函数模型的应用【例3】►某医药研究所开发的一种新药,如果成年人按规定的剂量服用,据监测:服药后每毫升血液中的含药量y(微克)与时间t(小时)之间近似满足如图所示的曲线.(1)写出第一次服药后y与t之间的函数关系式y=f(t);(2)据进一步测定:每毫升血液中含药量不少于0.25微克时,治疗有效.求服药一次后治疗有效的时间是多长?:可根据图象利用待定系数法确定函数解析式,然后把实际问题转化为解不等式问题进行求解.变式:某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答以下问题:(1)写出该城市人口总数y(万人)与年份x(年)的函数关系式;(2)计算10年以后该城市人口总数(精确到0.1万人);(3)计算大约多少年以后,该城市人口将达到120万人(精确到1年);济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名5(4)如果20年后该城市人口总数不超过120万人,年自然增长率应该控制在多少?(参考数据:1.0129≈1.113,1.01210≈1.127,lg1.2≈0.079,lg2≈0.3010,lg1.012≈0.005,lg1.009≈0.0039)解(1)1年后该城市人口总数为y=100+100×1.2%=100×(1+1.2%)2年后该城市人口总数为y=100×(1+1.2%)+100×(1+1.2%)×1.2%=100×(1+1.2%)2.3年后该城市人口总数为y=100×(1+1.2%)2+100×(1+1.2%)2×1.2%=100×(1+1.2%)3.x年后该城市人口总数为y=100×(1+1.2%)x.(2)10年后,人口总数为100×(1+1.2%)10≈112.7(万人).(3)设x年后该城市人口将达到120万人,即100×(1+1.2%)x=120,x=log1.012120100=log1.0121.20≈16(年).(4)由100×(1+x%)20≤120,得(1+x%)20≤1.2,两边取对数得20lg(1+x%)≤lg1.2=0.079,所以lg(1+x%)≤0.07920=0.00395,所以1+x%≤1.009,得x≤0.9,即年自然增长率应该控制在0.9%.[考题范例](12分)(2012·天津质检)在扶贫活动中,为了尽快脱贫(无债务)致富,企业甲将经营状况良好的某种消费品专卖店以5.8万元的优惠价格转让给了尚有5万元无息贷款没有偿还的小型企业乙,并约定从该店经营的利润中,首先保证企业乙的全体职工每月最低生活费的开支3600元后,逐步偿还转让费(不计息).在甲提供的资料中有:①这种消费品的进价为每件14元;②该店月销量Q(百件)与销售价格P(元)的关系如图所示;③每月需各种开支2000济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名6元.(1)当商品的价格为每件多少元时,月利润扣除职工最低生活费的余额最大?并求最大余额;(2)企业乙只依靠该店,最早可望在几年后脱贫?[规范解答]设该店月利润余额为L,则由题设得L=Q(P-14)×100-3600-2000,①由销量图易得Q=-2P+5014≤P≤20,-32P+4020<P≤26,(2分)代入①式得L=-2P+50P-14×100-560014≤P≤20,-32P+40P-14×100-560020P≤26,(4分)(1)当14≤P≤20时,Lmax=450元,此时P=19.5元;当20P≤26时,Lmax=12503元,此时P=613元.故当P=19.5元时,月利润余额最大,为450元.(8分)(2)设可在n年内脱贫,依题意有12n×450-50000-58000≥0,解得n≥20.即最早可望在20年后脱贫.(12分)济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名7一个防范特别关注实际问题的自变量的取值范围,合理确定函数的定义域.四个步骤(1)审题:深刻理解题意,分清条件和结论,理顺其中的数量关系,把握其中的数学本质;(2)建模:由题设中的数量关系,建立相应的数学模型,将实际问题转化为数学问题;(3)解模:用数学知识和方法解决转化出的数学问题;(4)还原:回到题目本身,检验结果的实际意义,给出结论.本节检测1.某企业去年销售收入1000万元,年成本为生产成本500万元与年广告成本200万元两部分.若年利润必须按p%纳税,且年广告费超出年销售收入2%的部分也按p%纳税,其他不纳税.已知该企业去年共纳税120万元.则税率p%为()A.10%B.12%C.25%D.40%2.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x万件时的生产成本为C(x)=12x2+2x+20(万元).一万件售价是20万元,为获取更大利润,该企业一个月应生产该商品数量为()A.36万件B.18万件C.22万件D.9万件3.某商店已按每件80元的成本购进某商品1000件,根据市场预测,销售价为每件100元时可全部售完,定价每提高1元时销售量就减少5件,若要获得最大利润,销售价应定为每件()A.100元B.110元C.150元D.190元济宁学院附属高中高三数学第一轮复习导学案编号012班级:高三()班姓名84.某厂有许多形状为直角梯形的铁皮边角料(如图),为降低消耗,开源节流,现要从这些边角料上截取矩形铁片(如图阴影部分)备用,则截取的矩形面积的最大值为________.5.(2011·浙江高考)某商家一月份至五月份累计销售额达3860万元,预测六月份销售额为500万元,七月份销售额比六月份递增x%,八月份销售额比七月份递增x%,九、十月份销售总额与七、八月份销售总额相等.若一月份至十月份销售总额至少达7000万元,则x的最小值是________.自我反思
本文标题:导学案013函数的应用教案
链接地址:https://www.777doc.com/doc-2537313 .html