您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 复数的概念杨浦高中培训机构新王牌
一、复习引入:数的概念是从实践中产生和发展起来的.早在人类社会初期,人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数的全体构成自然数集N奎屯王新敞新疆随着生产和科学的发展,数的概念也得到发展奎屯王新敞新疆为了解决测量、分配中遇到的将某些量进行等分的问题,人们引进了分数;为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负数.这样就把数集扩充到有理数集Q.显然NQ.如果把自然数集(含正整数和0)与负整数集合并在一起,构成整数集Z,则有ZQ、NZ.如果把整数看作分母为1的分数,那么有理数集实际上就是分数集奎屯王新敞新疆有些量与量之间的比值,例如用正方形的边长去度量它的对角线所得的结果,无法用有理数表示,为了解决这个矛盾,人们又引进了无理数.所谓无理数,就是无限不循环小数.有理数集与无理数集合并在一起,构成实数集R.因为有理数都可看作循环小数(包括整数、有限小数),无理数都是无限不循环小数,所以实数集实际上就是小数集奎屯王新敞新疆因生产和科学发展的需要而逐步扩充,数集的每一次扩充,对数学学科本身来说,也解决了在原有数集中某种运算不是永远可以实施的矛盾,分数解决了在整数集中不能整除的矛盾,负数解决了在正有理数集中不够减的矛盾,无理数解决了开方开不尽的矛盾.但是,数集扩到实数集R以后,像x2=-1这样的方程还是无解的,因为没有一个实数的平方等于-1.由于解方程的需要,人们引入了一个新数i,叫做虚数单位.并由此产生的了复数奎屯王新敞新疆二、讲解新课:1.虚数单位i:(1)它的平方等于-1,即21i;(2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立.2.i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i!3.i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1奎屯王新敞新疆4.复数的定义:形如(,)abiabR的数叫复数,a叫复数的实部,b叫复数的虚部奎屯王新敞新疆全体复数所成的集合叫做复数集,用字母C表示*奎屯王新敞新疆3.复数的代数形式:复数通常用字母z表示,即(,)zabiabR,把复数表示成a+bi的形式,叫做复数的代数形式奎屯王新敞新疆4.复数与实数、虚数、纯虚数及0的关系:对于复数(,)abiabR,当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0.5.复数集与其它数集之间的关系:NZQRC.6.两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等奎屯王新敞新疆这就是说,如果a,b,c,d∈R,那么a+bi=c+dia=c,b=d奎屯王新敞新疆复数相等的定义是求复数值,在复数集中解方程的重要依据奎屯王新敞新疆一般地,两个复数只能说相等或不相等,而不能比较大小.如3+5i与4+3i不能比较大小.现有一个命题:“任何两个复数都不能比较大小”对吗?不对奎屯王新敞新疆如果两个复数都是实数,就可以比较大小奎屯王新敞新疆只有当两个复数不全是实数时才不能比较大小奎屯王新敞新疆7.复平面、实轴、虚轴:复数z=a+bi(a、b∈R)与有序实数对(a,b)是一一对应关系奎屯王新敞新疆这是因为对于任何一个复数z=a+bi(a、b∈R),由复数相等的定义可知,可以由一个有序实数对(a,b)惟一确定,如z=3+2i可以由有序实数对(3,2)确定,又如z=-2+i可以由有序实数对(-2,1)来确定;又因为有序实数对(a,b)与平面直角坐标系中的点是一一对应的,如有序实数对(3,2)它与平面直角坐标系中的点A,横坐标为3,纵坐标为2,建立了一一对应的关系奎屯王新敞新疆由此可知,复数集与平面直角坐标系中的点集之间可以建立一一对应的关系.点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x轴叫做实轴,y轴叫做虚轴奎屯王新敞新疆实轴上的点都表示实数奎屯王新敞新疆对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0),它所确定的复数是z=0+0i=0表示是实数.故除了原点外,虚轴上的点都表示纯虚数奎屯王新敞新疆在复平面内的原点(0,0)表示实数0,实轴上的点(2,0)表示实数2,虚轴上的点(0,-1)表示纯虚数-i,虚轴上的点(0,5)表示纯虚数5i奎屯王新敞新疆非纯虚数对应的点在四个象限,例如点(-2,3)表示的复数是-2+3i,z=-bZ(a,b)aoyx5-3i对应的点(-5,-3)在第三象限等等.复数集C和复平面内所有的点所成的集合是一一对应关系,即复数zabi一一对应复平面内的点(,)Zab这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应.这就是复数的一种几何意义.也就是复数的另一种表示方法,即几何表示方法.三、讲解范例:例1请说出复数iiii53,31,213,32的实部和虚部,有没有纯虚数?答:它们都是虚数,它们的实部分别是2,-3,0,-3;虚部分别是3,21,-31,-5;-31i是纯虚数.例2复数-2i+3.14的实部和虚部是什么?答:实部是3.14,虚部是-2.易错为:实部是-2,虚部是3.14!例3实数m取什么数值时,复数z=m+1+(m-1)i是:(1)实数?(2)虚数?(3)纯虚数?[分析]因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实数、虚数和纯虚数的条件可以确定m的值.解:(1)当m-1=0,即m=1时,复数z是实数;(2)当m-1≠0,即m≠1时,复数z是虚数;(3)当m+1=0,且m-1≠0时,即m=-1时,复数z是纯虚数.例4已知(2x-1)+i=y-(3-y)i,其中x,y∈R,求x与y.解:根据复数相等的定义,得方程组)3(1,12yyx,所以x=25,y=4奎屯王新敞新疆四、课堂练习:1.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是()A.A∪B=CB.SCA=BC.A∩SCB=D.B∪SCB=C2.复数(2x2+5x+2)+(x2+x-2)i为虚数,则实数x满足()A.x=-21B.x=-2或-21C.x≠-2D.x≠1且x≠-23.已知集合M={1,2,(m2-3m-1)+(m2-5m-6)i},集合P={-1,3}.M∩P={3},则实数m的值为()A.-1B.-1或4C.6D.6或-14.满足方程x2-2x-3+(9y2-6y+1)i=0的实数对(x,y)表示的点的个数是______.5.复数z1=a+|b|i,z2=c+|d|i(a、b、c、d∈R),则z1=z2的充要条件是______.6.设复数z=log2(m2-3m-3)+ilog2(3-m)(m∈R),如果z是纯虚数,求m的值.7.若方程x2+(m+2i)x+(2+mi)=0至少有一个实数根,试求实数m的值.8.已知m∈R,复数z=1)2(mmm+(m2+2m-3)i,当m为何值时,(1)z∈R;(2)z是虚数;(3)z是纯虚数;(4)z=21+4i.答案:1.D2.D3.解析:由题设知3∈M,∴m2-3m-1+(m2-5m-6)i=3∴06531322mmmm,∴1614mmmm或或∴m=-1,故选A.4.解析:由题意知,0169,03222yyxx∴3113yxx或∴点对有(3,31),(-1,31)共有2个.答案:25.解析:z1=z2||||dbcaa=c且b2=d2.答案:a=c且b2=d26.解:由题意知,0)3(log,0)33(log222mmm∴03131332mmmm∴320432mmmm且∴2314mmmm且或,∴m=-1.7.解:方程化为(x2+mx+2)+(2x+m)i=0.∴02022mxmxx,∴x=-2m,∴,02242mm∴m2=8,∴m=±22.8.解:(1)m须满足.11,0322mmm解之得:m=-3.(2)m须满足m2+2m-3≠0且m-1≠0,解之得:m≠1且m≠-3.(3)m须满足.032,01)2(2mmmmm解之得:m=0或m=-2.(4)m须满足.432211)2(2mmmmm解之得:m∈奎屯王新敞新疆
本文标题:复数的概念杨浦高中培训机构新王牌
链接地址:https://www.777doc.com/doc-2543588 .html