您好,欢迎访问三七文档
1固体物理总结绪论1研究对象及内容研究固体的结构及其组成粒子间相互作用与运动规律以阐明固态物质性能和用途的学科。2固体物理学发展的里程碑十八世纪:阿羽依(R.J.Haüy法)--坚实、相同、平行六面体的“基石”有规则重复堆积.十九世纪:布喇菲(A.Bravais法)--空间点阵学晶体周期性.二十世纪初:X-射线衍射揭示晶体内部结构量子理论描述晶体内部微观粒子运动过程近几十年:固体物理学凝聚态物理:无序、尺度、维度、关联;晶体凝聚态物质第一部分晶体结构1布喇菲点阵和初基矢量晶体结构的特点在于原子排列的周期性质。布喇菲点阵是平移操作112233Rnanana所联系的诸点的列阵。布喇菲点阵是晶体结构周期性的数学抽象。点阵矢量112233Rnanana,其中,1n,2n和3n均为整数,1a,2a和3a是不在同一平面内的三个矢量,叫做布喇菲点阵的初基矢量,简称基矢。初基矢量所构成的平行六面体是布喇菲点阵的最小重复单元。布喇菲点阵是一个无限的分立点的列阵,无论从这个列阵中的哪个点去观察,周围点的分布和排列方位都是完全相同的。对一个给定的布喇菲点阵,初级矢量可以有多种取法。22初基晶胞(原胞)初基晶胞是布喇菲点阵的最小重复单元。初基晶胞必定正好包含布喇菲点阵的一个阵点。对于一个给定的布喇菲点阵,初基晶胞的选取方式可以不只一种,但不论初基晶胞的形状如何,初基晶胞的体积是唯一的,123cVaaa。3惯用晶胞(单胞)惯用晶胞是为了反映点阵的对称性而选用的晶胞。惯用晶胞可以是初基的或非初基的。惯用晶胞的体积是初基晶胞体积的整数倍,cVnV。其中,n是惯用晶胞所包含的阵点数。确定惯用晶胞几何尺寸的数字叫做点阵常数。4维格纳-赛兹晶胞(W-S晶胞)维格纳-赛兹晶胞是另一种能够反映晶体宏观对称性的晶胞,它是某一阵点与相邻阵点连线的中垂面(或中垂线)所围成的最小体积。维格纳-赛兹晶胞是初基晶胞。5晶体结构理想的晶体结构是由相同的物理单元放置在布喇菲点阵的阵点上构成的。这些物理单元称为基元,它可以是原子、分子或分子团(有时也可以指一组抽象的几何点)。将基元平移布喇菲点阵的所有点阵矢量,就得到晶体结构,或等价地表示为基元十点阵=晶体结构当选用非初基的惯用晶胞时,一个布喇菲点阵可以用带有基元的点阵去描写。第二部分倒易点阵和晶体衍射1.倒易点阵和倒易点阵初基矢量和一种晶体结构相联系的点阵有两种:晶体点阵和倒易点阵.前者是真实空间中的点阵,具有[长度]的量纲.后者是在与真实空间相联系的傅里叶空间中的点阵,具有[长度]-1量纲.一个具有晶体点阵周期的周期函数n(r)=n(r+R)展成傅氏级数后,其傅氏级数中的波矢在傅里叶空间中表现为一系列规则排列的点,这些点排列的规律性只决定于函数n(r)的周期性而与函数的具体形式无关.我们把在傅里叶空间中规则排列着的点的列阵称为倒易点阵.倒易点阵是3晶体结构周期性在博里叶空间中的数学抽象.如果把晶体点阵本身看作一个周期函数,我们可以说,倒易点阵就是晶体点阵的傅里叶变换.反之晶体点阵就是倒易点阵的傅里叶逆变换.倒易点阵的初基矢量(简称倒易点阵基矢)定义为2311232aabaaa3121232aabaaa1231232aabaaa(2.1)由此式定义的倒易点阵的每个初基矢量都与晶体点阵的两个初基矢量正交:0,22,ijijijbaij(2.2)倒易点阵矢量定义为112233lllGbbb,其中1l、2l、3l均为整数.很容易证明,由倒易点阵矢量G所联系的诸点的列阵正是前面由傅里叶分析所定义的倒易点阵.2.倒易点阵矢量与晶面指数间的关系对于晶体中面间跃为d的任何一组平行平面(hkl),有一组倒易点阵矢量与之垂直,其中最短的就是以晶面指数为指数的倒易点阵矢量123hklhklGbbb,(h、k、l是整数).且面间距等于该倒易点阵矢量长度倒数的2倍.2dhklG(2.3)如果用与平面族(hkl)垂直的任一倒易点阵矢量G来表示,2ndG(2.4)这里n是G与平行于它的最短倒易点阵矢量G(hkl)长度之比nhklGG(2.5)43.X-射线衍射的布喇格定律和劳厄条件X-射线的衍射条件有两种等价的表示法:(i)布喇格定律:布喇格假设入射波从晶体中的平行原子平面作镜面反射,每个原子平面只反射很少一部分辐射,而将大部分辐射透射到下一层原子平面.当来自平行原子平面的反射有相同位相时,发生相长干涉,于是得到尖锐的反射峰(称为布喇格峰),由此导出X-射线反射的布喇格定律为2sinnd(2.6)其中是入射波波长,n为相应的反射级,是入射束的布喇格角,d为面间距.(ii)劳厄条件:劳厄对X-射线衍射的处理方法和布喇格不同,他把晶体看作由放置在布喇格点阵阵点上的微观物体所组成,每个微观物体都向各个方向将入射辐射再辐射出去.由相距r的体元散射出的射线束之间的位相差因子是exp[]ikkr,在k方向散射波的总振幅正比于积分:expudVnrikr(2.7)即exp[]GGudVniGkr在一定的方向和入射波长下,当散射矢量k等于倒易点阵矢量G时,散射振幅有极大值,由此导出衍射的劳厄条件kG(2.8)在弹性散射中,劳厄条件又可写为220GkG(2.9a)或22GkG=(2.9b)可以证明,布喇格定律和劳厄条件完全是等价的。衍射条件的另一种表示法是劳厄方程:123222hklakakak(2.10)4.布里渊区第一布里渊区定义为倒易点阵的维格纳-赛兹(w-s)初基晶胞.5高布里渊区:把一个给定的倒易点阵阵点同其它阵点都连接起来,作这些连线的中垂面,于是波矢空间被这些中垂面(满足方程22GkG)分割成一块一块的区域,这些中垂面就构成了布里渊区的边界.第一布里渊区就是这些中垂面所围成的最小区域.第二布里渊区定义为从第一布里渊区出发只穿过一个中垂面所能到达的区域.依次类推,第n+1布里渊区定义为从第n布里渊区出发只穿过一个中垂面所能到达的但不在第n-1区内的区域.各级布里渊区有相同的体积.布里渊区边界是波矢空间中满足衍射条件(22GkG)的点的轨迹,所以,布里渊区是衍射条件的几何表示法.5.实验衍射方法常用的实验衍射方法有劳厄法,转动晶体法和粉末法。6.基元的几何结构因子基元的几何结构因子是这样一个物理量,它标志着基元内部各个原子的散射波相互干涉的结果对散射波总振幅的贡献,其决定于散射矢量kG,及基元中各原子的相对位置.基元的几何结构因子定义为expGjjjfGiGr(2.11)jf是第j原子的形状因子,代表基元中第j原子对散射波总振幅的贡献:expjjfdVnirGr(2.12)当基元的几何结构因子为零时,空间点阵所允许的反射消失,而根据消失了的反射(即消光规则)又可以帮助我们确定晶体结构.第三部分晶体结合1内聚能相距无限远的自由原子(或自由离子)的总能量与它们形成晶体的能量之差,称为晶体的内聚能。换句话说,内聚能也就是把晶体分离成它们的组成单元所需要的能量。2范德瓦耳斯互作用范德瓦耳斯互作用是感生偶极矩-偶极矩间的相互作用.这种相互作6用按6Ar的规律变化.分子晶体的结合就是依赖范德瓦耳斯互作用.如果由于泡利原理而产生的排斥作用有负幂次12Br的形式,则惰性气体晶体相距为r的原子间的相互作用能具有勒纳-琼斯势(Lennard-Jonespotential)的形式1264urrr(3.1)式中和是两个经验参数,由气相数据给出。3离子晶体的晶电能(马德隆能)离子晶体的结合依靠异号荷电离子间的静电吸引.离子晶体内聚能的主要部分来自静电能.电荷为q的N个离子对组成离子晶体时的静电能是22CGScouljijqqUNaNrr2200SI44couljijqNqUNarr(3.2)式中r是最近邻距离,1jijap称为马德隆常数.它决定于晶体结构.ijp是以最近邻距离r度量的参考离子i到任何一个离子j的距离.如果以负离子为参考离子,求和对正离子取“+”号,对负离子取“”号.离子间的短程排斥作用通常采取指数函数expr或负幂次函数nBr的形式,这两种形式都表达了泡利原理所产生的短程排斥作用随距离增加而急剧下降的特点.4平衡最近邻距离在平衡态下,晶体势能最低.由组成晶体的原子(离子)的总相互作用能对最近邻距离r求微商,可以得到平衡时原子(离子)的最近邻距离0r,再代回到晶体的总能量中,就可以求得晶体的内聚能.5晶体结合的基本形式分子晶体,离子晶体,共价晶体.金属晶体和氢键晶体.其结合力的主要特点及特征性质如下表所示.7第四章点阵振动(声子I)1格波与声子点阵振动的简正模式是具有一定频率和波矢K的平面波,通常称为格波.K值是第一布里渊区内的一系列分立值12,,KKKKN共有N个,等于晶体中初基晶胞的数目.不同的,KKs代表格波的不同模式,给定了波矢K,频率由点阵振动的第s支色散关系Ks相应地确定.波矢为K、频率为Ks的格波,其能量是量子化的,,12nssEnKK(4.1)函数Ks又称为声子的色散关系或声子能谱,一个波矢为K的第s支振动模式处于它的第,Ksn个激发态,我们就说,在晶体中存在有,Ksn个波矢为K的第s种声子.2点阵振动的色散关系简谐近似是处理点阵振动问题的理论基础.简谐近似下,如果只计入最近邻原子间的互作用,一维单原子点阵简正模式的色散关系是1sin2mKa(4.2)初基晶胞含有两个原子的一维点阵,简正模式的色散关系分为声学支和光学支.在布里渊区边界上声学支和光学支之间有一频率间隙(声子的能隙).三维点阵简正模式的色散关系是一维情况的推广.波矢K是三维矢量,频率Ks是波矢大小的函数,又是波矢方向的函数.单原子点阵的色散关系有三个声学支,其中两个代表横偏振,一个代表纵偏振.对带有基元的点阵,色散关系有3p支,这里p是基元中所包含的原子数.其中有3个声学支(晶体中有N个初基晶胞,共有3N个声学模式),有3p-3个光学支(共有(3p-3)N个光学模式)。总的模式数为3pN,等于晶体中原子的总自由度数。简正模式的色散关系在波矢空间具有平移对称性质:ssK+GK(4.4)同时也具有中心反演的对称性8ssKK(4.5)3第一布里渊区的振动模式对于点阵振动色散关系的同一支而言,K和K+G代表同一振动模式,因而格波的波矢是限制在第一布里渊区内的.第一布里渊区外的波矢所代表的振动模式只不过是第一布里渊区内的波矢所代表的模式的重复或再现而已.当格波的波矢超出第一布里渊区时,必须平移一个适当的倒易点阵矢量,用第一布里渊区内的波矢来描写.点阵振动的最大波矢是布里渊区边界所对应的波矢,相应的波长也就是点阵振动的最短波长.4声学支和光学支对初基晶胞含有不只一个原子的点阵,色散关系分为声学支和光学支.长声学波描写同一初基晶胞中原子(连同它们的质心)的整体运动,色散关系近似为直线vk(4.6)其性质类似声波,具有恒定的声速v。长光学波描写同一初基晶胞中原子的相对运动(质心固定不动).离子晶体的长光学波可以用光波激发,如果它们具有相同的频率和波矢,可以发生共振,这决定了离子晶体的红外光学性质.5中子的非弹性散射声子对中子的非弹性散射可以用来测量声子能谱.该实验方法所依据的基本原理是散射过程遵守能量守恒和波矢守恒定律.能量守恒定律要求:innsEEK(4.16)式中inE和nE是散射前后中子的能量,sK是吸收或发射的声子的频率.波矢守恒定律要求:ikGkK(4.17)ik和k是散射前后中子的波矢,K是吸收或发射的声子的波矢,G是一个倒易点阵矢量,G的选取必须使声子波矢不超出第一布里渊
本文标题:固体物理基本概念
链接地址:https://www.777doc.com/doc-2552193 .html